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ABSTRACT
Resilient cyber-physical systems comprise computing systems able
to continuously interact with the physical environment in which
they operate, despite runtime errors. The term resilience refers to
the ability to cope with unexpected inputs while delivering cor-
rect service. Examples of resilient computing systems are Google’s
PageRank and the Bubblesort algorithm. Engineering for resilient
cyber-physical systems requires a paradigm shift, prioritizing adapt-
ability to dynamic environments. Software as a tool for self-manag-
ement is a key instrument for dealing with uncertainty and embed-
ding resilience in these systems. Yet, software engineers encounter
the ongoing challenge of ensuring resilience despite environmen-
tal dynamic change. My thesis aims to pioneer an engineering
discipline for resilient cyber-physical systems. Over four years,
we conducted studies, built methods and tools, delivered software
packages, and a website offering guidance to practitioners. This
paper provides a condensed overview of the problems tackled, our
methodology, key contributions, and results highlights. Seeking
feedback from the community, this paper serves both as preparation
for the thesis defense and as insight into future research prospects.
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1 INTRODUCTION
Cyber-Physical Systems (CPSs) unite the digital and physical worlds,
increasingly supporting individuals and groups in their social and
professional endeavors. In contrast to traditional embedded systems,
CPSs are often designed as networks of interactive and dynamic
elements [24], including healthcare systems, mobility systems, pro-
cess control systems, and robotics. Such applications directly re-
flect strategic economic and social development areas, i.e., trans-
port, energy, well-being industry, and infrastructure. The European
roadmap and strategy for cyber-physical systems (CyPhERS [52])
lists five challenges to the development of CPSs: interoperabil-
ity, autonomy, privacy, resilience1, and uncertainty. Although all
these challenges are important and interconnected, we focus on
discussing resilience.
1Schatz [52] originally proposes dependability. Instead, we discuss resilience.
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Resilience is “the persistence of service delivery that can justifiably
be trusted, when facing changes.” [39]. Archetypal examples of re-
silient computing systems are Google’s PageRank [16, 26] and the
Bubblesort algorithm when compared to more efficient MergeSort
or QuickSort [2].

Engineering resilient CPSs involves rethinking their design fo-
cused on dynamic environments. CPSs are subject to interactions
with (human) users and operators [28], changing needs [7], and
heterogeneous components joining and leaving the system [29].
Therefore, the software controlling the CPS operation must au-
tomatically manage dynamic interactions and uncertain environ-
ments [3, 58], with guarantees of compliance with the system re-
quirements [20, 57]. Software engineers, however, face the challenge
of guaranteeing that complex systems (e.g., CPS) are dependable
to dynamic changes in the system and the environment [47].

Our study argues that resilience must be embedded in CPS by
design and through testing. Therefore, we aim to develop a soft-
ware discipline focusing on software-centered resilience design for
CPS, utilizing software-aided verification and validating CPS with
realistic scenarios. To this end, we developed open-access artifacts
that solve fundamental barriers to engineering resilient CPS: scien-
tific studies [11–13, 17, 41, 45, 50, 51, 55], scientific artifacts [6, 27],
software packages [5, 44, 48, 49], and a website with guidelines [10].
Our research aims to significantly contribute to Software Engi-
neering by focusing on resilient CPS as a future software-centered
discipline [34, 37, 42, 54]

2 METHODOLOGY
Our research goal is to step towards addressing the challenge of
ensuring CPS resilience amidst dynamic system and environmental
changes. To this end, we developed and delivered open-access ar-
tifacts that solve fundamental barriers to engineering resilient CPS.
We tackled challenges stemming from designing, implementing,
and testing resilient CPS. The artifacts resulted from an incremental
and cyclic process named design science [30], the process consists
of attaining awareness about a problem, devising a solution, and
validation. To attain awareness about the problem we used expan-
sive inquiry combined with literature reviews [36], and mapping
studies [43]. Then, we developed solutions by creatively composing
existing scientific artifacts. Finally, to validate the creative process
employed in the solution step we mainly used experimentation [59]
and statistical analyses [4, 21]. Lessons learned and reflections from
a validation effort were used to sharpen recurring cycles of aware-
ness attainment and solution refinement.

3 CONTRIBUTIONS AND RELATEDWORK
We provided the artifacts supporting key activities in establishing a
software discipline for resilient CPS engineering depicted in Fig. 1.
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Figure 1: Overview of our contributions within the activities involved in engineering resilient CPS.

This section expands on how our contributions answered research
questions to mitigate barriers that hamper research towards the
engineering discipline.

RQ1: How to design efficient self-adaptation for CPSs?
Designing for fail-safe operation requires enabling self-adaptation
to adequate the system behavior to the specification goals contin-
uously [3, 58]. To this end, software engineers must design the
system to monitor, reason, and act to change itself [35]. Yet, lack of
engineering knowledge, large input spaces, and component coordi-
nation threaten such a design. Consequently, the design of efficient
self-adaptation requires design decisions at the architecture level
and component level. At the architecture level, we contributed to
enabling and facilitating dynamic analysis processes, i.e., runtime
verification and field-based testing. To this end, we prepared guide-
lines [10, 12] that discuss constraint identification, design patterns
and instrumentation techniques. To manage large adaptation space
posed by the uncertain environment, we proposed a hybrid archi-
tecture for search-based control-theoretic controller design [13].
Differently from other works that use learning, online or offline, and
other statistical methods to reduce the adaptation space [25, 32, 46] ,
improves the efficiency of synthesizing adaptation strategies by op-
timizing the search process exploring the adaptation space. Our ap-
proach proved efficiency in three adaptation scenarios on a health-
care system, the BSN [27, 48]. At the component level design [1, 33]
,we proposed Mission Control [51] leveraging ensembles to coor-
dinate heterogeneous CPSs components to solve complex missions
through efficient coalition formation. Our work evaluated Mission
Control using the RoboMAX scenarios [5, 6] to show efficiency in
dealing with uncertain scenarios.

RQ2: How to formally ensure whether the adaptive CPS
complies with the specifications? Formally ensuring adaptive be-
havior requires code-level interventions, formal verification, and de-
fect identification. Model-based code-level interventions [9, 18, 38]
enforce environment assumptions in code but demand an additional
modeling step. We introduced four design patterns for embedded
domain-specific languages [56] to offer code-level assurances to
CPSs [49, 50]. We also contributed a mapping between software
properties in LTL (Linear Temporal Logic) and control quality at-
tributes [11] as an enabler to checking control-theoretic properties

in code. Differently from Cámara et al. [14], our mapping technique
relies on property specification patterns. We recommend how to
generate monitors, prepare the execution environment, instrument
the system, execute the system, and post-mortem analysis[10, 12].
Regardless, we proposed a search-based algorithm that takes an exe-
cution trace and a violated property to find a diagnostic for what has
violated the trace [41]. Unlike works that extrapolate information
from trace-slicing [22, 23] or showing common behaviors [19, 40],
our diagnostics algorithm explains violations through the muta-
tions applied to the property. In another work, we proposed an
immune-inspired negative selection algorithm for detecting candi-
date features in a violated property [17].

RQ3: How to validate large and complex CPS operating
in realistic scenarios? CPSs are often large and complex systems
and must handle complex human interactions and making test cam-
paigns hard to implement, even harder to automate [8]. For this
reason, testing CPS in realistic scenarios is costly and slow. The
activity requires rigorous planning yet there are no best practices
to support field-based testing campaigns [31]. Consequently, we de-
rived recommendations on how to specify the (un-)desired behavior,
generate test cases and prepare oracles, instrument the CPS, col-
lect data, and generate reports[10, 12]. Also, we developed human-
vehicle models for scenario-basted testing [44, 45]. In complement
to current vehicle simulations, e.g., macroscopic [53] or microscopic
models [15], our human-vehicle models compose maneuver models
consisting of accurate algebraic implementations. Additionally, we
contributed PASTA, a testing technique that uses markov models
to simulate patients by considering sensor data trends captured by
a networked healthcare system [55]. Our method found bugs in the
BSN [27, 48] more efficiently than random generation.

4 CONCLUSION
Our research aims to significantly contribute to Software Engineer-
ing by focusing on CPS resilience as a future software-centered
discipline. To this end, we followed design science to develop meth-
ods and tools to design for efficient self-adaptation, formally ensure
that the CPS complies with the specifications, and validate the CPS
in realistic scenarios. Ultimately, our study benefits researchers and
practitioners in Software Engineering.
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