
Towards an Engineering Discipline for Resilient Cyber-Physical
Systems

Ricardo D. Caldas
ricardo.caldas@chalmers.se

Chalmers University of Technology, Gothenburg, Sweden

ABSTRACT
Resilient cyber-physical systems comprise computing systems able
to continuously interact with the physical environment in which
they operate, despite runtime errors. The term resilience refers to
the ability to cope with unexpected inputs while delivering cor-
rect service. Examples of resilient computing systems are Google’s
PageRank and the Bubblesort algorithm. Engineering for resilient
cyber-physical systems requires a paradigm shift, prioritizing adapt-
ability to dynamic environments. Software as a tool for self-manag-
ement is a key instrument for dealing with uncertainty and embed-
ding resilience in these systems. Yet, software engineers encounter
the ongoing challenge of ensuring resilience despite environmen-
tal dynamic change. My thesis aims to pioneer an engineering
discipline for resilient cyber-physical systems. Over four years,
we conducted studies, built methods and tools, delivered software
packages, and a website offering guidance to practitioners. This
paper provides a condensed overview of the problems tackled, our
methodology, key contributions, and results highlights. Seeking
feedback from the community, this paper serves both as preparation
for the thesis defense and as insight into future research prospects.

KEYWORDS
Resilience, Cyber-Physical Systems, Software, Doctoral Thesis

1 INTRODUCTION
Cyber-Physical Systems (CPSs) unite the digital and physical worlds,
increasingly supporting individuals and groups in their social and
professional endeavors. In contrast to traditional embedded systems,
CPSs are often designed as networks of interactive and dynamic
elements [24], including healthcare systems, mobility systems, pro-
cess control systems, and robotics. Such applications directly re-
flect strategic economic and social development areas, i.e., trans-
port, energy, well-being industry, and infrastructure. The European
roadmap and strategy for cyber-physical systems (CyPhERS [52])
lists five challenges to the development of CPSs: interoperabil-
ity, autonomy, privacy, resilience1, and uncertainty. Although all
these challenges are important and interconnected, we focus on
discussing resilience.
1Schatz [52] originally proposes dependability. Instead, we discuss resilience.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE’24, July 15–19, 2024„ Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Resilience is “the persistence of service delivery that can justifiably
be trusted, when facing changes.” [39]. Archetypal examples of re-
silient computing systems are Google’s PageRank [16, 26] and the
Bubblesort algorithm when compared to more efficient MergeSort
or QuickSort [2].

Engineering resilient CPSs involves rethinking their design fo-
cused on dynamic environments. CPSs are subject to interactions
with (human) users and operators [28], changing needs [7], and
heterogeneous components joining and leaving the system [29].
Therefore, the software controlling the CPS operation must au-
tomatically manage dynamic interactions and uncertain environ-
ments [3, 58], with guarantees of compliance with the system re-
quirements [20, 57]. Software engineers, however, face the challenge
of guaranteeing that complex systems (e.g., CPS) are dependable
to dynamic changes in the system and the environment [47].

Our study argues that resilience must be embedded in CPS by
design and through testing. Therefore, we aim to develop a soft-
ware discipline focusing on software-centered resilience design for
CPS, utilizing software-aided verification and validating CPS with
realistic scenarios. To this end, we developed open-access artifacts
that solve fundamental barriers to engineering resilient CPS: scien-
tific studies [11–13, 17, 41, 45, 50, 51, 55], scientific artifacts [6, 27],
software packages [5, 44, 48, 49], and a website with guidelines [10].
Our research aims to significantly contribute to Software Engi-
neering by focusing on resilient CPS as a future software-centered
discipline [34, 37, 42, 54]

2 METHODOLOGY
Our research goal is to step towards addressing the challenge of
ensuring CPS resilience amidst dynamic system and environmental
changes. To this end, we developed and delivered open-access ar-
tifacts that solve fundamental barriers to engineering resilient CPS.
We tackled challenges stemming from designing, implementing,
and testing resilient CPS. The artifacts resulted from an incremental
and cyclic process named design science [30], the process consists
of attaining awareness about a problem, devising a solution, and
validation. To attain awareness about the problem we used expan-
sive inquiry combined with literature reviews [36], and mapping
studies [43]. Then, we developed solutions by creatively composing
existing scientific artifacts. Finally, to validate the creative process
employed in the solution step we mainly used experimentation [59]
and statistical analyses [4, 21]. Lessons learned and reflections from
a validation effort were used to sharpen recurring cycles of aware-
ness attainment and solution refinement.

3 CONTRIBUTIONS AND RELATEDWORK
We provided the artifacts supporting key activities in establishing a
software discipline for resilient CPS engineering depicted in Fig. 1.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


FSE’24, July 15–19, 2024„ Porto de Galinhas, Brazil Ricardo D. Caldas

Design Implementation Testing

Search-based Control-theoretic 
Controller Design

Enabling and Facilitating Runtime 
Verification and Field-based Testing

Architectural Design

Component-based Design

Database Design

User Interface Design

Coordinating Heterogeneous 
Components in Robotics

Validation

Verification

Defect Identification

Coding

Debugging

Refactoring

Optimization

Patterns to Catching Bugs Early 
through an Embedded DSL

Using Markov Chain Models to 
Testing a Networked Components

Driver-Vehicle Model for Scenario-
based Testing

Guidelines to Field-based Testing 
ROS applications

Guidelines to Runtime Verification 
of ROS applications

Specification of Control Theory 
Properties for Model Checking

Immune-Inspired Explainability for 
Property Violations

Search-based Diagnostics

Figure 1: Overview of our contributions within the activities involved in engineering resilient CPS.

This section expands on how our contributions answered research
questions to mitigate barriers that hamper research towards the
engineering discipline.

RQ1: How to design efficient self-adaptation for CPSs?
Designing for fail-safe operation requires enabling self-adaptation
to adequate the system behavior to the specification goals contin-
uously [3, 58]. To this end, software engineers must design the
system to monitor, reason, and act to change itself [35]. Yet, lack of
engineering knowledge, large input spaces, and component coordi-
nation threaten such a design. Consequently, the design of efficient
self-adaptation requires design decisions at the architecture level
and component level. At the architecture level, we contributed to
enabling and facilitating dynamic analysis processes, i.e., runtime
verification and field-based testing. To this end, we prepared guide-
lines [10, 12] that discuss constraint identification, design patterns
and instrumentation techniques. To manage large adaptation space
posed by the uncertain environment, we proposed a hybrid archi-
tecture for search-based control-theoretic controller design [13].
Differently from other works that use learning, online or offline, and
other statistical methods to reduce the adaptation space [25, 32, 46] ,
improves the efficiency of synthesizing adaptation strategies by op-
timizing the search process exploring the adaptation space. Our ap-
proach proved efficiency in three adaptation scenarios on a health-
care system, the BSN [27, 48]. At the component level design [1, 33]
,we proposed Mission Control [51] leveraging ensembles to coor-
dinate heterogeneous CPSs components to solve complex missions
through efficient coalition formation. Our work evaluated Mission
Control using the RoboMAX scenarios [5, 6] to show efficiency in
dealing with uncertain scenarios.

RQ2: How to formally ensure whether the adaptive CPS
complies with the specifications? Formally ensuring adaptive be-
havior requires code-level interventions, formal verification, and de-
fect identification. Model-based code-level interventions [9, 18, 38]
enforce environment assumptions in code but demand an additional
modeling step. We introduced four design patterns for embedded
domain-specific languages [56] to offer code-level assurances to
CPSs [49, 50]. We also contributed a mapping between software
properties in LTL (Linear Temporal Logic) and control quality at-
tributes [11] as an enabler to checking control-theoretic properties

in code. Differently from Cámara et al. [14], our mapping technique
relies on property specification patterns. We recommend how to
generate monitors, prepare the execution environment, instrument
the system, execute the system, and post-mortem analysis[10, 12].
Regardless, we proposed a search-based algorithm that takes an exe-
cution trace and a violated property to find a diagnostic for what has
violated the trace [41]. Unlike works that extrapolate information
from trace-slicing [22, 23] or showing common behaviors [19, 40],
our diagnostics algorithm explains violations through the muta-
tions applied to the property. In another work, we proposed an
immune-inspired negative selection algorithm for detecting candi-
date features in a violated property [17].

RQ3: How to validate large and complex CPS operating
in realistic scenarios? CPSs are often large and complex systems
and must handle complex human interactions and making test cam-
paigns hard to implement, even harder to automate [8]. For this
reason, testing CPS in realistic scenarios is costly and slow. The
activity requires rigorous planning yet there are no best practices
to support field-based testing campaigns [31]. Consequently, we de-
rived recommendations on how to specify the (un-)desired behavior,
generate test cases and prepare oracles, instrument the CPS, col-
lect data, and generate reports[10, 12]. Also, we developed human-
vehicle models for scenario-basted testing [44, 45]. In complement
to current vehicle simulations, e.g., macroscopic [53] or microscopic
models [15], our human-vehicle models compose maneuver models
consisting of accurate algebraic implementations. Additionally, we
contributed PASTA, a testing technique that uses markov models
to simulate patients by considering sensor data trends captured by
a networked healthcare system [55]. Our method found bugs in the
BSN [27, 48] more efficiently than random generation.

4 CONCLUSION
Our research aims to significantly contribute to Software Engineer-
ing by focusing on CPS resilience as a future software-centered
discipline. To this end, we followed design science to develop meth-
ods and tools to design for efficient self-adaptation, formally ensure
that the CPS complies with the specifications, and validate the CPS
in realistic scenarios. Ultimately, our study benefits researchers and
practitioners in Software Engineering.



Towards an Engineering Discipline for Resilient Cyber-Physical Systems FSE’24, July 15–19, 2024„ Porto de Galinhas, Brazil

REFERENCES
[1] (2017-2020). RobMoSys: Composable Models and Software for Robtics Systems -

Towards an EU Digital Industrial Platform for Robotics. http://robmosys.eu
[2] David H Ackley. 2013. Beyond efficiency. Commun. ACM 56, 10 (2013), 38–40.
[3] Musil Angelika et al. 2017. Patterns for Self-Adaptation in Cyber-Physical Systems.
[4] Andrea Arcuri et al. 2014. A hitchhiker’s guide to statistical tests for assessing

randomized algorithms in software engineering. Software Testing, Verification
and Reliability 24, 3 (2014), 219–250.

[5] Mehrnoosh Askarpour et al. [n. d.]. GitHub - Askarpour/RoboMAX: Robotic Mis-
sion Adaptation eXemplars. https://github.com/Askarpour/RoboMAX. [Accessed
06-04-2024].

[6] Mehrnoosh Askarpour et al. 2021. RoboMAX: Robotic Mission Adaptation eXem-
plars. In 2021 Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, 245–251.

[7] Nelly Bencomo et al. 2010. Requirements reflection: requirements as runtime
entities. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2. 199–202.

[8] Antonia Bertolino et al. 2021. A Survey of Field-based Testing Techniques. ACM
Computing Surveys (CSUR) 54, 5 (2021), 1–39.

[9] Jacob Pørksen Buch et al. 2014. Applying Simulation and a Domain-Specific Lan-
guage for an Adaptive Action Library. In Simulation, Modeling, and Programming
for Autonomous Robots. 86–97.

[10] Caldas, Ricardo et al. [n. d.]. Verification of ROS-based Systems. https://ros-
rvft.github.io/. [Accessed 06-04-2024].

[11] Caldas, Ricardo et al. 2021. Towards Mapping Control Theory and Software
Engineering Properties using Specification Patterns. In 2021 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems Companion
(ACSOS-C). IEEE, 281–286.

[12] Caldas, Ricardo et al. 2024. Verification and Testing of ROS-based Robotics
Systems in the Field: Guidelines for Developers and QA Teams. In In Submission
to Transactions of Software Engineering. IEEE.

[13] Caldas, Ricardo Diniz et al. 2020. A Hybrid Approach Combining Control The-
ory and AI for Engineering Self-Adaptive Systems. In IEEE/ACM 15th Symposium
on Software Engineering for Adaptive and Self-Managing Systems. ACM, 9–19.

[14] Javier Cámara et al. 2020. Towards Bridging the Gap between Control and
Self-Adaptive System Properties. In IEEE/ACM 15th Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems.

[15] Qianwen Chao et al. 2020. A Survey on Visual Traffic Simulation: Models,
Evaluations, and Applications in Autonomous Driving. Computer Graphics Forum
39 (2020).

[16] Reuven Cohen, Keren Erez, Daniel Ben-Avraham, and Shlomo Havlin. 2000.
Resilience of the internet to random breakdowns. Physical review letters 85, 21
(2000), 4626.

[17] João Paulo Costa de Araujo et al. 2024. Explainability for Property Violations
in Cyber-Physical Systems: An Immune-Inspired Approach. In Accepted at IEEE
Software. IEEE.

[18] Eve Coste-Maniere et al. 1997. The maestro language and its environment:
Specification, validation and control of robotic missions. In RSJ International Conf.
on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications.
IROS, Vol. 2. IEEE.

[19] Joshua Heneage Dawes et al. 2019. Explaining violations of properties in control-
flow temporal logic. In International Conference on Runtime Verification (RV).
Springer, 202–220.

[20] Rogério De Lemos et al. 2017. Software engineering for self-adaptive systems:
Research challenges in the provision of assurances. In Software Engineering for
Self-Adaptive Systems III. Assurances. Springer.

[21] Francisco Gomes de Oliveira Neto et al. 2019. Evolution of statistical analysis
in empirical software engineering research: Current state and steps forward.
Journal of Systems and Software 156 (2019), 246–267.

[22] Wei Dou et al. 2018. Model-Driven Trace Diagnostics for Pattern-Based Temporal
Specifications. In International Conference on Model Driven Engineering Languages
and Systems (MODELS). ACM/IEEE, 278–288.

[23] Thomas Ferrère et al. 2015. Trace diagnostics using temporal implicants. In
International Symposium on Automated Technology for Verification and Analysis.
Springer, 241–258.

[24] John Fitzgerald et al. 2014. From Embedded to Cyber-Physical Systems: Challenges
and Future Directions. Springer Berlin Heidelberg, Berlin, Heidelberg, 293–303.

[25] Ilias Gerostathopoulos et al. 2018. Adapting a system with noisy outputs with sta-
tistical guarantees. In Proceedings of the 13th International Conference on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 58–68.

[26] Gourab Ghoshal and Albert-László Barabási. 2011. Ranking stability and super-
stable nodes in complex networks. Nature communications 2, 1 (2011), 394.

[27] Eric Bernd Gil et al. 2021. Body Sensor Network: A Self-Adaptive System Exem-
plar in the Healthcare Domain. In 2021 Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). IEEE, 224–230.

[28] Miriam Gil et al. 2020. Engineering human-in-the-loop interactions in cyber-
physical systems. Information and Software Technology 126, October 2019 (2020).

[29] Omid Givehchi et al. 2017. Interoperability for Industrial Cyber-Physical Systems:
An Approach for Legacy Systems. IEEE Transactions on Industrial Informatics 13,
6 (2017), 3370–3378.

[30] Alan R. Hevner et al. 2021. Externalities of Design Science Research: Preparation
for Project Success. Vol. 12807 LNCS. Springer International Publishing. 118–130
pages.

[31] Nico Hochgeschwender and Thorsten Berger. 2022. Testing service robots in
the field: An experience report. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 165–172.

[32] Pooyan Jamshidi et al. 2017. Transfer learning for improving model predictions
in highly configurable software. In Proceedings of the 12th Symposium on Software
Engineering for Adaptive and Self-Managing Systems. IEEE, 31–41.

[33] Tobias Kaupp et al. 2007. Building a Software Architecture for a Human-Robot
Team Using the Orca Framework. In Proceedings 2007 IEEE International Confer-
ence on Robotics and Automation. IEEE, Rome, Italy, 3736–3741.

[34] Rick Kazman, S Jeromy Carrière, and Steven G Woods. 2000. Toward a discipline
of scenario-based architectural engineering. Annals of software engineering 9, 1
(2000), 5–33.

[35] Jeffrey O Kephart et al. 2003. The vision of autonomic computing. Computer 1
(2003), 41–50.

[36] Barbara Kitchenham et al. 2009. Systematic literature reviews in software
engineering–a systematic literature review. Information and software technology
51, 1 (2009), 7–15.

[37] Paul Klint, Ralf Lämmel, and Chris Verhoef. 2005. Toward an engineering disci-
pline for grammarware. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 14, 3 (2005), 331–380.

[38] Lars Kunze et al. 2011. Towards semantic robot description languages. In 2011
IEEE International Conference on Robotics and Automation. IEEE.

[39] Jean-Claude Laprie. 2008. From dependability to resilience. 38th Annual IEEE/IFIP
International Conference On Dependable Systems and Networks (2008).

[40] Qingzhou Luo et al. 2014. RV-Monitor: Efficient parametric runtime verification
with simultaneous properties. In International Conference on Runtime Verification
(RV). Springer, 285–300.

[41] Claudio Menghi et al. 2024. Search-based Trace Diagnostic. In In Submission to
Transactions of Software Engineering. IEEE.

[42] Ali Mili, Sherif Yacoub, Edward Addy, and Hafedh Mili. 1999. Toward an engi-
neering discipline of software reuse. IEEE software 16, 5 (1999), 22–31.

[43] Kai Petersen et al. 2008. Systematic mapping studies in software engineering. In
12th international conference on evaluation and assessment in software engineering
(EASE). BCS Learning & Development.

[44] Rodrigo Queiroz et al. [n. d.]. GitHub - rodrigoqueiroz/geoscenarioserver. https:
//github.com/rodrigoqueiroz/geoscenarioserver. [Accessed 06-04-2024].

[45] Rodrigo Queiroz et al. 2024. A driver-vehicle model for ADS scenario-based
testing. IEEE Transactions on Intelligent Transportation Systems (2024).

[46] F. Quin et al. 2019. Efficient Analysis of Large Adaptation Spaces in Self-Adaptive
Systems using Machine Learning. In IEEE/ACM 14th Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). 1–12.

[47] Denise Ratasich et al. 2019. A roadmap toward the resilient internet of things for
cyber-physical systems. IEEE Access 7 (2019), 13260–13283.

[48] Ricardo D. Caldas. [n. d.]. GitHub - lesunb/bsn: Body Sensor Network (BSN):
a prototype for exercising dependable adaptation in healthcare domain. https:
//github.com/lesunb/bsn. [Accessed 06-04-2024].

[49] Momina Rizwan et al. [n. d.]. GitHub - lu-cs-sde/EzSkiROS: EzSkiROS: An em-
bedded Domain Specific Language (DSL) to describe robotic skills in SkiROS.
https://github.com/lu-cs-sde/EzSkiROS. [Accessed 06-04-2024].

[50] Momina Rizwan et al. 2023. EzSkiROS: A Case Study on Embedded Robotics
DSLs to Catch Bugs Early. In IEEE/ACM 5th International Workshop on Robotics
Software Engineering (RoSE). IEEE, 61–68.

[51] Gabriel Rodrigues et al. 2022. An architecture for mission coordination of het-
erogeneous robots. Journal of Systems and Software (2022), 111363.

[52] Bernhard Schätz et al. 2015. Cyber-Physical European Roadmap and Strategy.
CyPhERS (2015), 1–43.

[53] J. Sewall et al. 2010. Continuum Traffic Simulation. Computer Graphics Forum 29
(2010).

[54] Mary Shaw. 1990. Prospects for an engineering discipline of software. IEEE
Software 7, 6 (1990), 15–24.

[55] Samira Silva et al. 2024. An Experience Report on Testing a Body Sensor Network
Application. In In Submission to SafeComp’24. IEEE.

[56] Andrzej Wąsowski and Thorsten Berger. 2023. Domain-Specific Languages: Effec-
tive modeling, automation, and reuse. Springer.

[57] Danny Weyns et al. 2017. Perpetual Assurances for Self-Adaptive Systems. In
Software Engineering for Self-Adaptive Systems III. Assurances. Springer.

[58] DannyWeyns et al. 2021. A Research Agenda for Smarter Cyber-Physical Systems.
Journal of Integrated Design and Process Science 25 (2021), 1–21.

[59] Claes Wohlin et al. 2012. Experimentation in software engineering. Springer
Science & Business Media.

http://robmosys.eu
https://github.com/Askarpour/RoboMAX
https://ros-rvft.github.io/
https://ros-rvft.github.io/
https://github.com/rodrigoqueiroz/geoscenarioserver
https://github.com/rodrigoqueiroz/geoscenarioserver
https://github.com/lesunb/bsn
https://github.com/lesunb/bsn
https://github.com/lu-cs-sde/EzSkiROS

	Abstract
	1 Introduction
	2 Methodology
	3 Contributions and Related Work
	4 Conclusion
	References

