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Abstract—Recent worldwide events shed light on the need
of human-centered systems engineering in the healthcare do-
main. These systems must be prepared to evolve quickly but
safely, according to unpredicted environments and ever-changing
pathogens that spread ruthlessly. Such scenarios suffocate hos-
pitals’ infrastructure and disable healthcare systems that are
not prepared to deal with unpredicted environments without
costly re-engineering. In the face of these challenges, we offer
the SA-BSN – Self-Adaptive Body Sensor Network – prototype
to explore the rather dynamic patient’s health status monitoring.
The exemplar is focused on self-adaptation and comes with
scenarios that hinder an interplay between system reliability and
battery consumption that is available after each execution. Also,
we provide: (i) a noise injection mechanism, (ii) file-based patient
profiles’ configuration, (iii) six healthcare sensor simulations, and
(iv) an extensible/reusable controller implementation for self-
adaptation. The artifact is implemented in ROS (Robot Operating
System), which embraces principles such as ease of use and relies
on an active open source community support.

Index Terms—Body sensor network, self-adaptive systems,
healthcare exemplar, cyber-physical systems, control theory.

I. INTRODUCTION

In spite of various research efforts in IT for the healthcare
domain in the last years, e.g. [1], [2], the development of
healthcare self-adaptive cyber-physical systems is still quite
challenging due to its safety critical nature. The provision of
assurance evidences for the compliance of quality attributes
such as safety [3], reliability [4], and cost [5] has a vital impor-
tance in this domain. Therefore, equipping these systems with
self-configuration, self-healing, and self-management compe-
tences has become paramount for healthcare and assisted living
applications.

The evolution of self-adaptive systems can be explained
from a historical perspective through a set of complementary
stages, namely waves [6]. These waves encompass concepts
like: (i) automation of management tasks; (ii) architecture-
based adaptation; (iii) use of models at runtime; (iv) adaptation
based on goals; (v) provision of guarantees under uncertain-
ties; (vi) control-based approaches; and (vii) use of learning
techniques in adaptation. Although some of the concepts in
vi and vii are well-established for at least five years [7], [8],
and the inspiration from machine learning and control theory
on self-adaptive systems goes way beyond that, we are just

starting to grasp the benefits of adopting their fundamentals
in the engineering of self-adaptive cyber-physical systems.

The SEAMS community has steadily supported in self-
adaptive systems [9]. Although there are proposals available in
the healthcare domain [10] and in the engineering of safety-
and mission critical adaptive systems [11]–[13], to the best
of our knowledge, there is no particular exemplar of a cyber-
physical system based on control-theoretical principles in the
domain of adaptive body sensor network systems. Driven
by the need of having a control theory-based prototype to
explore the effects of uncertainties on quality attributes of
safety critical applications, we present the Self-Adaptive Body
Sensor Network exemplar (SA-BSN) [14]. The SA-BSN is
designed as a software exemplar to monitor and analyse
the health statuses of patients individually, through a set of
sensors in tandem with a centralized processor. Moreover,
as an exemplar for the self-adaptive domain, the adaptation
goal of the SA-BSN is to keep a target reliability level while
accounting for a target energy consumption management. In
the past few years, our artifact has been not only under
constant evolution but also adopted in the evaluation of some
previous works of our research group [15]–[18], proving itself
as an artifact that is synergistic with the ideas presented in the
aforementioned waves vi and vii. The use of our exemplar
is straightforward, and we have made it available online,
together with a virtual machine, supporting a set of scenarios
and adaptation policies1. The executable scenarios we propose
demonstrate how our artifact adapts itself to cope with three
distinct classes of uncertainty: the system itself, the system
goals, and the environment.

The rest of the paper is structured as follows. In Section II,
we present an overview of SA-BSN, provided with adaptation
scenarios and the quality attributes involved. Section III de-
scribes the exemplar from the architecture and implementation
perspectives, including implementation details as well. In
Section IV, we guide the reader to use the provided artifact
for experimentation. Finally, Section V concludes the paper
with the next steps.

1https://github.com/lesunb/bsn
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II. SA-BSN EXEMPLAR AND ADAPTATION OVERVIEW

The SA-BSN is an exemplar of a healthcare application
implemented in ROS [19]. The goal of the SA-BSN is to detect
emergencies by continuously monitoring the patient’s health
status. Furthermore, the SA-BSN is equipped to adapt itself
in order to maintain the desired QoS levels with minimal hu-
man intervention, while accounting for classes of uncertainty.
Hereafter we stand upon the well-known architectural view
of managed and managing system as means of seeking for
separation of concerns [6], [20] to refer to the corresponding
SA-BSN Managing and Managed System modules and their
responsibilities. In this section, we describe the SA-BSN
exemplar requirements in a goal-oriented perspective.
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Fig. 1: The Goal Model used to represent the BSN

According to the goal-oriented view of the SA-BSN’s func-
tional requirements shown in Figure 1, the Managed System
has six sensors to continuously monitor the patient’s vital
signs and achieve its goal of analysing the vital signs and
detecting an emergency when it occurs. A range of vital
signs is periodically collected from the patient through a
set of distributed sensors: electrocardiograph sensor (ECG)
for heart rate and electrocardiogram curve; a pulse oximeter
(SaO2) for measuring blood oxygen saturation; a thermometer
(TEMP), that collects the body temperature in Celsius; a
sphygmomanometer for measuring and systolic arterial blood
pressure (ABP); there is also a Glucose sensor for measuring
blood glucose levels. The collected data is then forwarded to
the Central Hub: a component in the Managed System to fuse
the vital signs and classify the overall health situation of the
patient into low, moderate, or high risk status. In addition
to that, the Central Hub can stack other responsibilities like
preprocessing the incoming data, filtering the redundancy, and
translating communication protocols.

The Managing System module of the SA-BSN is, in turn,
responsible for continuously assuring the fulfillment of the
desired QoS attributes related to the values of reliability
and battery consumption (i.e. cost). For the evaluation of
the quality of the adaptation we use control theory metrics
following the terminology proposed by Camara et al. [21].
The chosen QoS constraint is attributed to a setpoint, which
is set by the user before the system execution. For example,

if the concerned QoS attribute is the reliability, one could set
it to 95%, within an acceptable error range. This is called
setpoint tracking, which can be measured by the steady-state
error (SSE) metric. In addition to this requirement, the user can
verify other control theoretic metrics related to the transient
behavior, which can be evaluated at the end of the system
execution. For instance, the user could set the threshold for
the adaptation overshoot, specifying that it should not exceed
10% of the target value (setpoint). Another example would
be choosing the settling time in a way that the adaptation
should not take more than 3 minutes to converge. We further
illustrate these metrics in Section IV, where we present a
running scenario for the BSN.

While trying to meet its requirements, the system is prone
to a range of uncertainties. Thus, the controller is activated to
mitigate the effects of unexpected events in quality attributes.
Table I presents the uncertainties and the adaptation goals of
three scenarios that can be executed in the SA-BSN. The first
scenario, S1, focuses on uncertainties related to the overflow
of sensed data into the the Central Hub queue and also to
the possible data uncertainties in sensors, which are related to
the reliability of the system. The second scenario, S2, focuses
on the uncertainty related to the operational frequencies of
the components, which can lead to a battery consumption that
exceeds what is needed to satisfy the requirements. In the third
scenario, S3, depending on the patient profile, the operator
may not want to use certain sensors; with fewer components
to manage, less uncertainty in the system is expected and,
consequently, a more stable adaptation process.

III. SA-BSN IMPLEMENTATION DETAILS

In this section we further delve into the architecture perspec-
tive (Section III-A) and the implementation details (Section
III-B) of the SA-BSN exemplar.
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Fig. 2: Architectural perspective of the SA-BSN as a self-
adaptive exemplar.



Scenario Uncertainty Class [17] : Type Impact Adaptation Policy Affected QoS Attribute

S1 SI: unexpected number of users Delays on message processing Adjust Central Hub service time rate Reliability
SG: uncertain sampling rate Uncertain mean time to failure Adjusting sensors’ sampling rate Reliability

S2 SG: uncertain sampling rate High battery consumption Adjusting sensors’ sampling rate Cost

S3 ENV: uncertain sensor availability Unwanted sensors activated Disable unwanted sensors Cost, reliability

TABLE I: SA-BSN adaptation scenarios under different classes of uncertainty (SI: System Itself (S1); SG: System Goals
(S1-S2); ENV: execution context (S3))

A. SA-BSN architecture on ROS

The SA-BSN artifact is composed of four main modules:
Managing System, Managed System, Knowledge Repository
and Simulation, as depicted in Figure 2. Below we further
detail these architecture modules of the SA-BSN and their
functionalities.

1) The Managing System: This SA-BSN module comprises
the Strategy Manager and Strategy Enactor and is in charge
of implementing the controller to deal with the adaptation
issues. The Strategy Manager is responsible for estimating
the reliability and cost setpoints for the components of the
Managed System module, given a system desired setpoint
and the system’s reliability and cost estimated via a paramet-
ric formula available in the knowledge repository [18]. The
Strategy Enactor is where the controller is implemented; it is
responsible for applying the adaptation strategies to achieve
the previously estimated setpoints for each component.

Figure 3 shows interaction between these two components
and the other parts of the system and the closed feedback
loop for Strategy Enactor, which works for both the Managed
System components’ and system setpoints. This component
uses the setpoints estimated by the Strategy Manager and
compares them to the actual value of the desired QoS attribute
(i.e., reliability or cost) for each component, applying the
adaptation policy according to the analyzed status. In our
case, the adaptation policy consists in adjusting the com-
ponents frequencies according to the calculated error using
the controller in order to simulate the sensors’ sampling rate
and the central hub processing rate. These knobs directly
impact the overall system reliability since: (i) more data points
collected by a sensor per time unit is expected to render a
more precise measurement of the vital signal and (ii) messages
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Fig. 3: System feedback loop and its interactions [18]

lost in the Central Hub due to queue problems may impact
the reliability of the system. Also, they impact the energy
consumption (cost) of the components since more executions
are performed per time unit. We should note that the BSN is
not limited by actuation through such knobs or control based
on reliability or cost. These are interchangeable with other
actuation mechanisms and QoS attributes.

2) The Managed System: The Managed System comprises
the sensors for vital signs monitoring and the Central Hub.
The components responsible for the communication between
this module and the other SA-BSN modules are the Probes
and the Effectors. The Probes are responsible for gathering
data from the Managed System components and sending them
to the Knowledge Repository and the Managing System. The
Effectors are responsible for receiving adaptation commands
from the Strategy Enactor and changing the Managed System
components parameters accordingly.

3) The Knowledge Repository: The knowledge repository
comprises (i) the parametric formulas to compute the relia-
bility and energy consumption of the Managed System, which
were generated using our Pistar-GODA MDP artifact [17], (ii)
the goals to be achieved, in the form of the goal model, and
(iii) the System Logs where knowledge about the system’s
execution is persisted.The System Logs which consist of 5
different types of logs: Adaptation, Status, Event, Uncertainty
and EnergyStatus. The Adaptation log is where the Strategy
Enactor adaptation commands are persisted. The Status log
is where information about Managed System components
status is persisted. The Event log is where information about
activation and deactivation of Managed System components
is persisted. The Uncertainty log is where information about
injected uncertainty is persisted. Finally, the EnergyStatus log
is where cost information is persisted. We should note that the
data persistence in the logs as well as the interface between
the Knowledge Repository and the other SA-BSN modules is
carried out by the Data Access component.

4) The Simulation Module: This fourth SA-BSN module
comprises the Uncertainty Injector component to simulate the
uncertainties envisioned for the Managed System. As such,
this component is responsible for injecting uncertainty into
the Managed System sensors in order to induce failure on
the data collection process. One important comment to make
here is that the sensors will not fail unless the uncertainty
injector is active. However, if it is desirable that a specific
group of sensors do not fail under any circumstances, one must
configure the injector to not inject uncertainty into them; this
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feature is explained in the next sections.

B. SA-BSN operation on ROS

The four SA-BSN modules are coordinated through ROS
messages exchanged in a publish/subscribe architecture, using
the TCP/IP communication protocol. The dynamic view of
the adaptation process is shown in the sequence diagram in
Figure 4, where we present the messages exchanged between
components when an adaptation is required. The need for
adaptation is detected when there is a disturbance in the
attribute of interest, i.e., when the error is bigger than the
setpoint times a stability margin, which is fixed in 0.02. If the
adaptation is needed, the Strategy Manager sends a DataAc-
cessRequest message to the Data Access component, which
will fetch the log entries regarding failure rates or battery
consumptions of the Managed System components. Then, the
Strategy Manager estimates the setpoints for all Managed
System components, and send them as a Strategy message
to the Strategy Enactor. In its turn, the Enactor uses these
setpoints to estimate the frequency of the components, sending
an AdaptationCommand message to the Effector that redirects
it to the target component. If any exception is verified, the
Strategy Enactor sends an Exception message to the Strategy
Manager, which acts accordingly. Finally, the Managed System
components receive the AdaptationCommand, change their
frequencies, and continue to send their current condition in
periodic Status messages to the Probe, which forwards them
to the Data Access node right after;

IV. HANDS ON THE SA-BSN

In this section, we present a guide to aid the reader
in setting up an experimental environment and execute an
adaptation scenario as a demonstration2 of the replicability
of our exemplar.

A. Customizing the Strategy Enactor

We provide a default controller implementation into the
Strategy Enactor component. We should note, however, that
the researcher using the SA-BSN can implement its own
controller. The objective of our default controller is to calculate
frequency values for components according to the desired set-
point values for the adaptation metric calculated in the Strategy

2Check our demonstration video in Youtube. Link provided in the github
repository.

Manager. Furthermore, the user-defined controller builds the
AdaptationCommand message in order to communicate with
the Effector. Similar to the other component in the system, the
configuration of the controller and its parameters are defined in
a launch file. Our default controller is a proportional controller,
that consists in a proportional gain Kp, which acts directly on
the error e(t) between a desired setpoint and the current value
of a given metric (e.g. reliability), generating a control output
u(t).

u(t) = Kp × e(t) (1)

For the case of a user-defined controller, the user must redesign
the methods setUp, apply reli strategy, apply cost strategy,
and receiveEvent, which are defined in the Controller source
and header files. The setUp method is responsible for reading
the launch file and assigning values to the respective controller
parameters as well as receiving the QoS attribute to be adapted,
which is defined in the Strategy Manager. The apply reli -
strategy and apply cost strategy are the methods responsible
for calculating the module’s frequency values, depending on
the QoS attribute used, building then the AdaptationCommand
message. Finally, the receiveEvent method is responsible for
receiving activation and deactivation signals, generated by
the Managed System modules, and setting the parameters to
default values.

B. System Configuration and Setup

The setup required to build the runtime environment for the
SA-BSN, comprises five stages: (i) experimental environment
setup, (ii) vital signs generation setup (iii) sensors setup
(iv) building the System Manager and (v) configuring the
Uncertainty Injection mechanism. Below we further detail
each stage.

1) Experimental Environment Setup: There are two ways
of obtaining the local version of the system, through the
download of a virtual machine or the download of the source
code. Further instructions to access both can be found in a
Github repository3, where we provide an installation guide.

In order to configure SA-BSN components parameters we
use ROS features called launch files. They are XML-based
files in which the tags are divided in three types: launch,
node and param. The launch tag indicates the scope
of the launch file. The node tag is responsible for setting
up the component. The param tag4 is responsible for the
configuration of the components parameters and contains a
name attribute, which represents the name of the parameter,
a value attribute and an optional type attribute. When
configuring the SA-BSN we mostly change the attribute value
of the param tags.

2) Vital Signs Generation Setup: For the vital signs gener-
ation setup the user needs to configure the launch file for the
Patient module, where an example of a partial configuration
is shown in Figure 5. This module is responsible for the
generation of vital signs following a configured discrete-time

3https://github.com/lesunb/bsn
4http://wiki.ros.org/roslaunch/XML/param



Fig. 5: Patient module excerpt.

markov chain model, so that sensors use ROS services to
request for data in each execution. In the configuration file, we
set the name of the vital signs to be generated (one for each
sensor), as in line 7, the frequencies for each change (change
rate), as in lines 10-15, and the offset (in seconds), as in lines
18-23, where the data changes only if it has passed period
plus offset seconds since the last change. We also define the
transition probabilities for each of the five states the sensors
can assume, as in lines 26-30, and the range of risk values for
each of these states, as in lines 33-37.

3) Sensors setup: For the sensors setup, the user needs
to configure one launch file for each sensor. See Figure 6,
for an example of the Oximeter’s configuration. As shown
in lines 10-12, the probability occurrences are configured for
low, moderate and high risks. In lines 15-19, the range of
values are defined for the vital signs risks. The third and
fourth parameters are the sensor accuracy, defined in line 22,
and the instant recharge parameter, defined in line 25. The
instant recharge specifies whether the sensor simulates the

Fig. 6: Sensor module excerpt

Fig. 7: Uncertainty injector excerpt

recharging of the battery or not. Finally, the last parameter
is the start parameter, shown in line 5, which defines whether
the sensor will be active during the execution or if it will be
shutdown right at the beginning.

4) Building the System Manager: The System Manager
components configuration entail the Strategy Enactor and the
System Manager launch files.

To configure the Strategy Enactor, the user has to configure
the frequency and Kp, since we provided a proportional
controller as default. In case of a user-defined controller, we
could have as many parameters as needed.

There are several parameters to be defined to configure
the Strategy Manager: monitor freq, setpoint, actuation freq,
info quant, offset, gain, and qos attribute. The monitor freq
is the frequency in which the Strategy Manager will monitor
the values of the chosen adaptation metric. The actuation freq
is the frequency in which the Strategy Manager will calculate
values for the setpoints of the Managed System components.
The setpoint parameter is the system setpoint to be achieved,
where the system reliability and cost are estimated via their
corresponding parametric formula. The info quant parameter
specifies how many data points will be used to calculate
the reliability. The offset and gain parameters are related to
the search algorithm, together they delimit the size of the
adaptation space. Finally, the qos attribute parameter is name
of the QoS attribute of interest. In order to use the engine
for adaptation of reliability one must have to set the node
parameter name and type attributes to ”reli engine” while for
cost one must have to set them to ”cost engine”.

5) Configuring the Uncertainty Injection Mechanism: The
last setup stage required to run the SA-BSN is the configu-
ration of the uncertainty injection mechanism, where noise is
introduced into the sensors to induce failure by data inconsis-
tency. An example of a partial configuration for this module
is shown in Figure 7. The configurable parameters for this

Fig. 8: Example of a step uncertainty signal waveform



Fig. 9: Reliability curve obtained after the execution

module are the injection frequency (line 4) and the sensors in
which uncertainty shall be injected (line 6).

In lines 9-14, we refer to the configuration of a few
other parameters that can be also considered for each sensor:
type, offset, amplitude, frequency, duration, and begin. The
type parameter defines the kind of wave the uncertainty will
follow, which can be either step, ramp or random. An
example of a step waveform is shown in Figure 8, where
the wave parameters set in the configuration are indicated. It
is important to notice that each component can be stimulated
by a different type of noise. The offset parameter refers
to the uncertainty offset to be injected. The amplitude
parameter is the magnitude of the uncertainty value, which has
implications on how much the noisy data will differ from the
original collected data. The value of such a difference is what
defines if the sensor failed or not due to the noisy input. The
frequency parameter is the rate in which the uncertainty
must be injected in the Managed System sensors. It is worth
mentioning that, for sensors with instantaneous recharge (in-
stant recharge parameter), the frequency parameter defines
an upper bound of the number of failures that can happen.

C. Example Scenario Evaluation

The user must execute the ready-to-go bash script (run.sh)
to run the exemplar. The run command can be configured
by maximum execution time (seconds) as an argument (e.g.
“bash run.sh 30”). The default duration of the execution is 300
seconds, in case that no argument is passed.

Once the SA-BSN runs, a series of terminals will pop up
on the screen, each corresponding to a component. By these
means, the user can keep track of the execution progress.
After the execution time has elapsed, the terminals will close,
and the user can check the logs or run the analyzer.py script
(inside the “src/simulation/analyzer” folder) to obtain a graph
describing the monitored QoS attribute curve, i.e., reliability

or cost. Including the aforementioned control-theoretic metrics
of interest. Instructions for the use of the analyzer.py script are
given in the SA-BSN GitHub repository.

To illustrate our exemplar, we exercise scenario S1 (cf.
Table I) and plot the results in Figure 9. In scenario S1, we
simulate the SA-BSNs reliability degrading due to process-
ing message delays: an unexpected number of patients are
simultaneously using the system, flooding the communication
channel of the Central Hub. The analyzer.py script generates
Figure 9 that contains 540 seconds of execution with all the
six sensors active, which was obtained by the artifact’s default
configuration. Furthermore, we can verify that the setpoint, in
this case, was 90% reliability and the convergence value was
82%, which resulted in a steady-state error (SSE) of 8.84%.
The maximum value reached was 112.25% of the convergence
value that results in an overshoot of 12.25%. Finally, the
settling time was 339 seconds.

V. CONCLUSION

In this paper we provide SA-BSN, an exemplar of the self-
adaptive system in the healthcare domain. Our exemplar sheds
light on control theoretical solutions for SAS by providing
an environment with disturbance injection in the components
that encode vital signs monitoring sensors and a central hub.
Henceforth, we present the requirements that guided the SA-
BSN implementation and the uncertainty scenarios available
in the current version. Then, we discuss the implementation
details in ROS and provide a walk-through for interested users.
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