
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

A Driver-Vehicle Model
for ADS Scenario-based Testing

Rodrigo Queiroz, Divit Sharma, Ricardo Caldas, Krzysztof Czarnecki, Sergio Garcia, Thorsten Berger,
and Patrizio Pelliccione

Abstract—Scenario-based testing for automated driving systems
(ADS) must be able to simulate traffic scenarios that rely on
interactions with other vehicles. Although many languages for
high-level scenario modelling have been proposed, they lack
the features to precisely and reliably control the required
micro-simulation, while also supporting behavior reuse and test
reproducibility for a wide range of interactive scenarios. To fill
this gap between scenario design and execution, we propose the
Simulated Driver-Vehicle (SDV) model to represent and simulate
vehicles as dynamic entities with their behavior being constrained
by scenario design and goals set by testers. The model combines
driver and vehicle as a single entity. It is based on human-
like driving and the mechanical limitations of real vehicles for
realistic simulation. The model leverages behavior trees to express
high-level behaviors in terms of lower-level maneuvers, affording
multiple driving styles and reuse. Furthermore, optimization-
based maneuver planners guide the simulated vehicles towards
the desired behavior. Our extensive evaluation shows the model’s
design effectiveness using NHTSA pre-crash scenarios, its motion
realism in comparison to naturalistic urban traffic, and its
scalability with traffic density. Finally, we show the applicability
of our SDV model to test a real ADS and to identify crash
scenarios, which are impractical to represent using predefined
vehicle trajectories. The SDV model instances can be injected
into existing simulation environments via co-simulation.

I. INTRODUCTION

Testing automated driving systems (ADS) requires simulating
a wide range of operating scenarios to ensure an ADS’s safety
and conformity to traffic regulations and industry standards.
As the responsibility for the driving task shifts from the
human driver to the ADS [1], the system is required to handle
interactions with other road users, especially human-operated
vehicles. Test scenarios must reflect how these dynamic
interactions between the subject system (a.k.a. ego vehicle)
and other vehicles can unfold in real traffic.

Figure 1 shows a near-collision of ego with v2 cutting-in
before, taken from the National Highway Traffic Safety Admin-
istration’s (NHTSA) pre-crash scenario catalog [2]. The cut-in
maneuver of v2 triggers reactions by other close vehicles, with
ego’s reaction strongly influencing how the scenario unfolds.
Testing collision avoidance in such scenarios requires models
able to represent and simulate traffic dynamics, including the
interactions between ego and other human-operated vehicles.

Many domain-specific languages (DSLs) [3], [4] for scenario-
based testing have emerged. These DSLs include models for rep-

R. Queiroz, D. Sharma, and K. Czarnecki are with the University of Waterloo,
Canada. R. Caldas, S. Garcia, and T. Berger (secondary affiliation) are with
Chalmers |University of Gothenburg, Sweden. T. Berger (primary affiliation)
is with Ruhr University Bochum, Germany, P. Pelliccione is with Gran Sasso
Science Institute (GSSI), Italy

Ego

v1
v2

GeoScenario co-simulation

v3

x

y v1

Ego v2 v3

Fig. 1. A challenging interaction between ego and human-operated vehicles
based on a pre-crash scenario from NHTSA [2] and using our SDV model in
simulation: (left) in the map frame, the SDV Model as v2 performs the cut-in
maneuver targeting ego, and (right) a high-fidelity co-simulator renders the
scene.

resenting test scenarios. Testers design such scenarios by defin-
ing behaviors of human-operated vehicles, and then executing
them in simulation tools. However, these DSLs are often limited
to relatively simple models, for instance, replay of pre-recorded
trajectories [5], event-based orchestration to directly manipulate
the vehicle state [6], [7], and narrow behavior models (e.g.,
vehicle following [8]). As a result, testers may have limited
control over the precise movement of the simulated vehicles
and the resulting behaviors may vary between simulation tools,
hurting test reproducibility and the validity of test results.

To bridge the gap between scenario design and execution,
we contribute the GeoScenario Simulated Driver-Vehicle (SDV)
model to specify and simulate realistic behavior of human-
operated vehicles in ADS scenario testing. SDV offers high
expressiveness, execution accuracy, scalability, and reuse. It
extends the scenario-definition language GeoScenario [5] with
human-operated vehicles as dynamic agents in both scenario
representation and simulation execution. It implements a driver
behavior model inspired by Michon et al. [9], including (i)
route selection as a strategic decision, (ii) maneuver selection
as a tactical decision, and (iii) maneuver implementation as
an operational decision. Specifically, the maneuver selection
logic is expressed using behavior trees [10], [11], offering
modularity and reuse. The maneuvers are implemented using
an optimization-based trajectory planner, which guides the
simulation towards achieving the scenario’s test objectives.
The executed maneuvers can be configured by simulation
engineers to reflect different driving styles, subject to the
human and physical limitations of actual vehicles.

We evaluate our model’s (i) scenario design effectiveness,
which includes expressiveness, execution accuracy, and reuse,
using NHTSA pre-crash scenarios; (ii) motion realism in
comparison to naturalistic urban traffic; (iii) scalability with
traffic density; and (iv) practical applicability to test an actual

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

ADS. The results show that our model can successfully express,
achieving levels of model reuse of over 80 %, and accurately
execute all eighteen NHTSA vehicle-to-vehicle pre-crash
scenarios (except one variant), while only four scenarios are
effectively expressible using predefined trajectories, which is
our baseline. We also show that, after calibration, the model is
capable of producing maneuver decisions and trajectories that
closely resemble those from recorded real-world traffic. The
model also scales in scenarios with up to 10–20 simultaneous
and highly interactive vehicles in real-time simulation. Finally,
we demonstrate the model’s applicability to test an ADS
software stack in simulation, which has been tested on public
roads, and reveal collision scenarios that cannot be expressed
using the baseline.

In summary, our paper contributes:
• a novel simulation model for human-operated vehicles,

that combines behavior trees with an optimization-based
trajectory planner to provide a highly-expressive, control-
lable, realistic, reusable, and scalable scenario representa-
tion for ADS testing;

• a set of experiments to support our claims about the
qualities of the model;

• an open-source reference implementation of the model,
which can be integrated with any simulation environment
in co-simulation mode.1

II. BACKGROUND AND RELATED WORK

Scenario-Based Testing. Kaner et al. [12] define scenario-
based testing as the dominant paradigm of black-box testing,
where scenarios are used to check how the system copes with
both nominal and off-nominal situations. In the automotive
context, ISO 26262 [13] and ISO 21448 [14] guide the devel-
opment of safety-critical electrical/electronic vehicle systems
and mandate the use of scenarios in validation activities.

Scenarios are designed based on expert knowledge and on
the traffic situations the ADS must be able to cope with, or by
reproducing and augmenting situations collected from traffic
databases. For example, CommonRoad [15], a benchmark for
motion planners, provides scenarios extracted from NGSIM
data [16]. A scenario can also be systematically generated to
achieve specific test goals, e.g., lead the system to trigger a
certain behavior, such as an emergency maneuver, or find a
critical situation leading to a crash. For example, Abdessalem et
al. [17], [18] use evolutionary optimization methods combined
with surrogate model learning to find crash scenarios.
Scenario Representation and Driver Behavior. Multiple tool-
independent DSLs have emerged recently, providing a formal
definition of scenario structure, behavior, test conditions, and
pass/fail criteria to support scenario-based testing in simulation.
The goal is to offer a uniform representation and semantics
across methods and tools. The scope and structure of each
language vary, but fundamentally they all define how vehicles
behave in traffic and orchestrate interactions with ego that must
be executed by a simulation tool during the test.

OpenScenario [6] is a standard managed by the Association
for Standardization of Automation and Measuring Systems

1https://github.com/rodrigoqueiroz/geoscenarioserver

(ASAM). The format describes dynamic content in driving
simulation applications in combination with OpenDRIVE [19],
which specifies the road structure. It covers traffic and driver
behavior, weather, environmental events, and other features.
It includes the description of a driver, but there is no model
for driver behavior in any form other than “road following.”
The standard also does not contain maneuver models or a
vehicle model. Maneuvers are described in terms of actions
(e.g., change the vehicle’s position or speed), and trajectories
(defined as a polyline, clothoid, or spline).

The Measurable Scenario Description Language (MSDL) [7]
expands the concepts of OpenScenario. The language uses
modifiers to change the behavior of the agents similarly to
actions from OpenScenario. It introduces parameter variability
(a range instead of a single value) along with constraints to
narrow down values and connect multiple parameters (e.g.,
velocity of vehicle A is between 10 and 20 m/s and less than
vehicle B). The language supports generating concrete scenarios
by picking random values while obeying the constraints.

Other formats are Scenic [20], Scenario Description Lan-
guage (SDL) [21], and SceML [22]. A common trait amongst
them is that they are primarily declarative languages. They
define “what” must happen in a scenario during key events
without specifying “how.” Their approach relies on external
simulation models to handle the execution.

Finally, GeoScenario [5] provides mechanisms to represent
road users and an orchestration system to allow testers’
control of how they interact with ego. The language tackles
the multi-agent orchestration via triggers, but is limited at
the individual vehicle behavior to select among predefined
trajectories specific to the road. Our SDV model extends
GeoScenario with interactive and flexible driver behavior.
Models for Traffic Simulation. Macroscopic traffic models
describe vehicle motion and interaction in terms of flow and
density. They are mainly used for large scale simulation over a
road network [23]. They are not suitable for street-level vehicle
motion and interactions and thus ADS testing.

In contrast, microscopic traffic models can generate vehicle
motion and interactions at the individual vehicle level at the
cost of limited scalability [24]. They are able to encode simple
rules that allow a vehicle to follow waypoints or the structure
of the road, avoid frontal collisions by alternating between
driving and stopping, and perform maneuvers triggered by
conditions [25], [26], [27]. However, while capturing this
reactive behavior, they usually lack enough detail to simulate
complex interactions between the vehicle under test and other
road users in realistic conditions. For example, they often use
simplistic motion limited to a constant velocity throughout
a maneuver and disregard the physical limitation of a real
vehicle. They also cannot represent complex interactions,
such as vehicles responding to merge attempts, using the
available road space to navigate around obstacles, or skillfully
navigating an intersection with multiple influencing factors
(e.g., vehicles, pedestrians, and traffic regulation).

Established microscopic models target a particular maneuver,
for example, vehicle following [28], [25], [8], [29], decisions
to perform lane changes [26], [30], and the execution of lane
changes [31]. While these models capture details of speed

https://github.com/rodrigoqueiroz/geoscenarioserver

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

regulation during vehicle following or the parameters of
deciding lane changes, they are suitable for testing specific
functions and subsystems (for instance, testing adaptive cruise
control) in a very constrained environment. They do not cover
the complexity of the full driving task required for scenarios
in system-level testing of an ADS, including complex decision
making among multiple maneuvers and trajectory generation.
They can be used to inform the design and parameter setting
of the behavior trees in our model, however.

A different approach is to learn models directly from data.
For example, a trajectory prediction model trained on recorded
traffic data can be run in closed loop as a simulator [32], [33],
[34], [35], [36], [37]. Recent approaches allow a degree of
controllability of the road users during simulation, e.g., by using
conditional models [36] or diffusion models with cost func-
tions [35], [37] to guide trajectory sampling during inference.
While helping to automate scenario creation, the main limitation
of purely data-driven approaches is the inherent bias in the
data used to build the models. In particular, driver mistakes
and safety-critical scenarios are rare in traffic and thus usually
absent from or rare in existing datasets. In fact, programmable
behavior models provide an opportunity to generate such rare
scenarios and use them to augment the training for data-driven
approaches. Finally, while the models can capture the diversity
of driving styles in road environments they were trained on,
they are difficult to generalize to other environments [38].

Thus, scenario-based testing requires executable models
that offer high expressiveness, controllability, and realistic
behavior—a combination that existing work currently lacks.
Behavior Trees. Behavior trees is a discrete control architec-
ture, which aims to address the shortcomings of finite state
machines and their variations, and provide improved modularity,
reusability, scalability, and readability [10], [39], [11]. These
user-oriented qualities motivate their use to express driving
behavior, which has been explored in the past. Several works
have proposed using behavior trees to make maneuver decisions
within an ADS [40], [41], [42]. Perhaps the closest is BTSce-
nario [43], which uses them to control maneuvers of vehicles in
simulation testing. However, BTScenario uses behavior trees to
issue driving control inputs directly to a longitudinal and lateral
controller. The lack of a trajectory planner makes it impossible
to plan flexible and realistic trajectories to avoid static and
dynamic obstacles. The work also lacks a systematic evaluation
of expressiveness, reusability, motion realism, and scalability.
In another work, we used behavior trees to control pedestrians
in simulation, where behavior trees set motion objectives for
pedestrians moving according to the social force model [44].
To the best of our knowledge, we are not aware of other work
that (i) combines behvaior trees with an optimization-based
planner to provide a highly-expressive, controllable, realistic,
reusable, and scalable scenario representation for ADS testing,
and (ii) systematically evaluates such an approach.

III. THE SDV MODEL

We now introduce the concepts and the algorithm of the SDV
model (see Fig. 2). The overall simulation consists of (i) a set
of simulated road users, each run in a separate process (SDV

Planner) that plans its future trajectory, and (ii) a single traffic
simulation process (Traffic Simulation) that executes these
trajectories. For simplicity and scalability, the model combines
driver and vehicle as a single entity (SDV Planner), abstracting
away driver inputs, such as steering angle, braking, and throttle.

An SDV Planner executes its behavior tree and communicates
with the Traffic Simulation using two shared variables: an SDV
Planner pi reads the traffic state (TS) and writes the traffic plan
(TP), and the Traffic Simulation reads TP and writes TS. The
latter includes the current state of all vehicles, including their
coordinates x, y in the global Cartesian frame of the simulation,
their first and second time derivatives, and heading θ:

VehicleStateCartesian(t) = [x, ẋ, ẍ, y, ẏ, ÿ, θ]t (1)

The traffic plan includes the future trajectories for all SDVs.
Each trajectory is represented in the Frénet reference frame [45]
of the respective SDV (Fig. 3). This is motivated by the fact
that safety requirements on the motion of an on-road vehicle
are typically specified relative to its Frénet frame derived from
the local lane geometry (see, e.g., Shalev-Shwartz et al. [46]).
SDV Planner. An SDV Planner process is instantiated for each
SDV, as indicated by the stacked boxes in Fig. 2. The SDV
Planner pi for vehicle vi is given a route, represented as a
sequence of lane segments that can be legally traversed by the
vehicle, and a behavior tree (btree), and it performs a maneuver
planning loop with six steps (pi.1–6). Maneuver planning starts
with the procedure pi.1:perceive, which retrieves the current
traffic state from the perspective of vi and simulates perception,
including sensor range. The next procedure, pi.2:predict,
projects the perceived local traffic state forward to the future
simulation time targeted by the current maneuver planning
iteration. Prediction uses the previously planned trajectory for
vi but assumes constant velocity for all other vehicles, including
externally-simulated ones for which planned trajectories are
not observable, such as ego under test. The next step, pi.1:to ff,
transforms the local traffic state TS into the Frénet frame of
vi, resulting in ff local TS. The frame is defined w.r.t. the
center line of the lane (red in Fig. 3(b)) that vi is traveling on
as part of its route (Fig. 3(a)). Its origin is the point along this
line that is closest to the vehicle. The resulting frame’s S axis
represents the longitudinal displacement along this center line,
and the D axis represents the lateral displacement.
Maneuver Selection. Maneuver selection is expressed using be-
havior trees. Their leaf nodes are either (i) conditions to be eval-
uated (based on the traffic state), (ii) decisions that start (or end)
maneuvers, or (iii) references to sub-trees. The inner nodes are
control nodes, a.k.a. operators, which are responsible for coordi-
nating the execution of their child nodes. There are three opera-
tors. The fallback operator commands a sequential execution of
its children, left-to-right, and returns success immediately when
a child succeeds; otherwise, it executes the next child. It returns
failure when none of the children succeeds. The sequence
operator also commands a sequential execution of its children,
left-to-right, but returns failure immediately when a child fails;
otherwise, it executes the next child. It returns success when
all of the children succeed. The parallel operator commands
the execution of all children at the same time. The rule for
success or failure of the parallel operator is user-defined.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

𝑣!

𝑣!

𝑣!

Traffic State (TS)

𝑣!

Traffic Plan (TP)

SDV Planner 𝒑𝒊

𝑝".5.1: sample_targets
𝑝".5.2: gen_traj
𝑝".5.3: optimize

𝑝":5: plan_mtraj

ff_local_TS

𝑣!
𝑣" traj

𝑝".1: perceive
𝑝".2: predict
𝑝".3: to_ff

𝑝".6: write

𝑝".4: tick

mconfig

Traffic Simulation (TSim)

TSim.1: to_cf
TSim.2: update

𝑣" btree

Planning loop for 𝑣" TS
update

loop

Fig. 2. Flow diagram of the simulation. Top-level sharp-cornered rectangles represent processes; nested ones represent procedures. Round-cornered rectangles
denote data. Solid arrows represent control flow; dashed ones represent data flow. Arrows attached to vehicles denote velocities; curves denote trajectories.

Fig. 3. Road Geometry and vehicle displacement from original coordinates
are transformed into Frénet Frame using the tangential and normal vectors t⃗,
n⃗ from the lane centre line (shown in red).

Figure 4 shows a graphical representation of two example
behavior trees, with the left one being the main tree planning
cut-in behavior, and the right one being a sub-tree referred
to from the main one and performing lane maintenance. The
main behavior tree would be assigned to an SDV, e.g., v2 in
Fig. 1. In each maneuver planning cycle of v2, the main tree is
“ticked” (pi.4:tick in Fig. 2), i.e., executed, with the local traffic
state as context. The execution starts with the root of the main
behavior tree and traverses the nodes according to the operator
semantics. In our example (Fig. 4), the execution starts from the

Fig. 4. Graphical representation of an example SDV behavior tree structuring
the decision-making with conditions (c) and maneuvers (m). ’?’ is the fallback
operator (short-circuit or), and → is the sequence operator (short-circuit and).

fallback operator at the root and proceeds to its child sequence
node and then to condition (c:trigger), which tests whether the
simulation has been running for 4 s. If the condition is satisfied,
the execution proceeds to the deepest sequence node and then
to the condition (c:gap) checking the acceptance distance gap
of 5 m (+-10%) for a lane change in front of another vehicle
to the right (lane id=-1). If the gap condition is satisfied, the
maneuver node (m:swerve) executes the lane change with a
target distance gap of 5 m and a relative velocity of -3 m/s
(∆s=(5,-3)). If any of the two conditions fails, the reference
node is executed, triggering the execution of the sub-tree on the
right, which implements a simple lane maintenance behavior.

A maneuver exposes a set of parameters to control it
according to scenario objectives. We use existing maneuver
catalogs [47], [48] and implement a subset to support the
evaluation in Sec. V: keep velocity, follow vehicle, swerve
(used for lane change and swerve-in-lane), merge-in-front,
stop, and reverse. Note that these are elemental maneuvers;
composite maneuvers are implemented as behavior trees over
the elemental maneuvers. For instance, lane maintenance
composes velocity keeping, vehicle following, and stopping
(for more complex examples see Queiroz [49]).

A maneuver node (e.g., m:swerve in Fig. 4) is represented by
a maneuver configuration (mconfig in Fig. 2), consisting of the
maneuver type (e.g., swerve) and a set of maneuver-specific
parameter values, such as the target gap distance and velocity
delta for swerve. The behavior tree execution (’tick’) is
expected to return a maneuver configuration, which is passed
to maneuver trajectory planning. A given maneuver ends when
a condition for a new maneuver is triggered in btree.

Maneuver Trajectory Planning. The maneuver trajectory
is planned by pi.5:plan mtraj in Fig. 2 using the maneuver
configuration (mconfig) and local traffic (ff local TS) as
inputs. A trajectory is represented by longitudinal S(t) and

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

Fig. 5. Trajectory planning by the SDV during a cut-in maneuver

lateral D(t) position in Frénet frame as functions of time
and the trajectory duration T (2). Velocity and acceleration
are the first and second derivatives, respectively, yielding the
longitudinal and lateral state (3):

Trajectory = [S,D, T] (2)

VehicleStateFrénet(t) = [S(t− t0), Ṡ(t− t0), S̈(t− t0),

D(t− t0), Ḋ(t− t0), D̈(t− t0)]

for 0 ≤ t− t0 ≤ T (3)

The maneuver trajectory planning has three steps: (i)
sampling the target states for the maneuver, (ii) generating
candidate trajectories, and (iii) selecting an optimal trajectory.
Each of these steps is controlled by a set of parameters
accessible through the maneuver configuration and allowing
testers to realize a particular driving style or misbehavior.
The generated trajectories are kept short (2 to 5 s), but some
maneuvers, e.g., vehicle following, are performed over extended
periods of time and thus consist of a sequence of trajectories. A
behavior tree decides when to start, finish, or abort a maneuver.

Figure 5 shows an example of trajectory planning for a cut-in
maneuver to the right lane. The grey lines are the candidate
trajectories eliminated by the optimization step due to feasibility
constraints or higher cost. The blue line is the best cut-in
trajectory based on motion constraints and the scenario goals
specified in mconfig, such as the target gap to ego. The green
line is the ego trajectory. The remainder of this section describes
each of the three planning steps in more detail.

1) Maneuver target sampling (pi.5.1:sample targets): Each
maneuver has its own configurable criteria to define its target
state and a time to reach it (T). Target sampling requires
evaluating the road structure, traffic, and other objects. For
example, in the NHTSA pre-crash scenario ‘following vehicle
making maneuver’ scenario, a leading vehicle decelerates to
turn right that may end up in a crash with an inattentive
following vehicle. In such scenario, the leading vehicle’s target
for velocity keeping is to comfortably accelerate to and maintain
a specified target velocity, e.g., 16 m/s. The following vehicle’s
target for vehicle following is to reach and keep a certain target
time gap, e.g., 10 s. While defining the maneuver configuration,
parameters can be set as a single value or a value range, e.g.,
a vehicle target speed of exactly 14 m/s, or within 20 % from
14 m/s. The target sampling step samples multiple values for
each range parameter independently and creates a target state
set as a Cartesian product over the parameter value sets. The
sampling method of choice and the number of samples per

Fig. 6. Checking for collisions with static objects and dynamic obstacles

parameter are configurable through mconfig. The target state
set corresponds to the end points of the trajectories in Fig. 5.

2) Trajectory generation (pi.5.2:gen traj): Given a target
state set, trajectory generation computes a smooth motion
profile between the current vehicle state and each target state
in the Frénet frame (Fig. 5). We use an approach that plans each
trajectory as a pair of quintic polynomials, in longitudinal and
lateral direction, respectively, which minimizes jerk to reflect
smooth and comfortable driving [45]. A quintic polynomial is
a jerk-minimal connection between two points P0 and PT ,
with p(t) as location and T as the motion duration [50].
More precisely, such a quintic polynomial minimizes the total
accumulated jerk over the one-dimensional trajectory:

Jp,T :=

∫ t=T

t=0

...
p 2(t)dt (4)

This step generates a trajectory by computing the coefficients
of two quintic polynomials, S(t) for the longitudinal dimension
as p(t), and D(t) for the lateral direction as p(t), to fit the
boundary conditions: the initial state VehicleStateFrénet(t0) and
each of the target states VehicleStateFrénet(t0 + T) from the
target-sampling step. This results in a candidate set that respect
the maneuver target constraints.

3) Optimal trajectory selection (pi.5.3:optimize): This step
selects a trajectory that is feasible and optimal with respect
to a set of maneuver feasibility constraints and cost functions,
which are configured in the maneuver configuration to suit
the needs of the test scenario. Feasibility constraints reject
trajectories with any collision, direction inversion, lane depar-
ture, and exceedance of maximum lateral/longitudinal jerk and
acceleration. These are checked by sampling points over the
planned and predicted trajectories (e.g., ego), as illustrated
Fig. 6. Note that the optimization step predicts the motion of
other vehicles by assuming constant longitudinal velocity in
Frénet frame. Furthermore, the constraints can be configured to
fit the scenario objectives. For example, the behavior tree of a
v2 (Fig. 1) may issue a swerve maneuver with a configuration
that disables its collision check to simulate a reckless cut-in.

The remaining candidate set is ranked using a weighted sum
of configurable cost functions:

• Time cost penalizes trajectories longer or shorter than the
target time T .

• Efficiency cost penalizes low average velocity.
• Lane-offset cost penalizes distance from lane center during

the entire trajectory.
• Jerk cost penalizes high longitudinal and lateral jerk over

the entire trajectory (JS,T and JD,T).

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

• Acceleration cost penalizes high longitudinal and lateral
acceleration over the entire trajectory.

• Proximity cost penalizes proximity to obstacles (vehicles,
pedestrians, or other objects).

The best trajectory is the lowest-cost feasible one. Weights
can be adjusted per behavior tree node according to scenario
goals. For example, if a given scenario requires the vehicle
to drive too close to ego, the proximity cost weight for ego
should be lowered. The resulting trajectory respects realistic
vehicle motion, balances conflicting qualities such as progress
and comfort, while implementing the scenario goals.
Traffic Simulation Execution. Traffic plans are executed in
Traffic Simulation, a process that sets the traffic state of each
SDV in TS according to its planned trajectory. It runs at a
fixed frequency that is typically an order of magnitude higher
than that of an SDVPlanner. The new trajectories produced
by the SDVPlanner processes arrive asynchronously in the
traffic plan TP (e.g., pi.6:write). Traffic Simulation retrieves
the state of each SDV for the current simulation time from TP,
transforms it to the global Cartesian frame of the simulation
(TSim.1:ro cf), and updates the state of the corresponding SDV
in TS (TSim.2:update). Note that updates to TP (pi.6:write)
and TS (TSim.2:update) are atomic.

IV. MODEL IMPLEMENTATION

A reference implementation for the SDV model and tools for
running scenarios in simulation are available as part of the
open-source project GeoScenario Server. The server parses
scenario definitions expressed using Lanelet2 map [51] and the
GeoScenario language [5] extended with the SDV behavior-tree
definition format and creates a traffic simulation with the
SDV model instances running concurrently. The server is
implemented in Python and operates as a co-simulator to be
interfaced with the simulation of the ego vehicle, its sensors,
and the ADS under test. The implementation also provides a
sample integration with an existing simulator, WISE Sim, and
an ADS software stack, WISE ADS. The GSClient component
provides a shared memory interface between the GeoScenario
Server and WISE Sim, which runs within the game engine
Unreal and provides LiDAR and camera simulation. The
high-fidelity dynamics model of the ego vehicle, a Lincoln
MKZ, runs as a Robot Operating System (ROS) [52] module
along with the WISE ADS. The GeoScenario Server can be
integrated into any other simulation environment, simply by
customizing GSClient for the new environment.

V. EVALUATION

We evaluate the SDV model in terms of design effectiveness,
realistic vehicle motion, practical applicability for scenario-
based ADS testing, and scalability. The following research
questions guide our evaluation:

• RQ1: Can realistic and interactive scenarios for ADS
testing be effectively modeled and executed via SDV
models?

• RQ2: Can SDV models generate realistic vehicle motion?
• RQ3: Can the use of SDV models improve the effective-

ness of scenario-based testing of a real ADS?

• RQ4: How does the model performance scale with traffic
density?

A. Effective Scenario Development (RQ1)

We evaluate the effectiveness of scenario development using the
SDV model by analyzing how the model improves GeoScenario
as the baseline DSL to design and execute test scenarios from
a catalog using three metrics:

• (i) Expressiveness: Given a set of scenarios, we classify
them as follows: we assign success (S) when all behaviors
are successfully expressed with no limitations, partial
(P) when the behaviors for at least one variation of the
scenario can be expressed, or failure (F) otherwise.

• (ii) Execution accuracy: After running a simulation, we
classify the degree to which scenarios are correctly exe-
cuted according to NHTSA description: success (S) when
all vehicles behave as expected and the scenario objective
is achieved; partial (P) when at least one variation of the
scenario succeeds; and failure (F) otherwise.

• (iii) Reuse: We quantify reuse in a scenario based on
the internal reuse level [53]. Given a scenario containing
a set of behavior trees (higher-level items), the metric
is defined as M/L, where M is the number of nodes
(lower-level items) that are used more than once (i.e.,
used also in behavior trees of other scenarios) and L is
the total number of nodes in the set of behavior trees. This
metric assumes values between 0 and 1 and represents the
percentage of internal reuse. We also compute the internal
reuse level accounting for only the nodes that are actually
executed in a successful simulation.

Since the SDV model extends the capabilities of
GeoScenario, we use the latter as the baseline [5]. We focus on
safety-critical scenarios and, specifically, we use the Pre-Crash
Scenario Typology from NHTSA [2]. These interactive and
realistic scenarios can challenge the ADS capabilities in crash
avoidance and they are commonly used as a reference for
ADS validation in other projects [54], [27]. We filter the
original set for scenarios with vehicle-to-vehicle interactions,
resulting in 18 scenarios (Table I).

We design each scenario using a combination of the original
GeoScenario and multiple instances of SDV models with their
respective behavior trees and maneuver configurations. The
original NHTSA set is based on reported events between human-
operated vehicles, but we assume that one of the vehicles is ego,
operated by the ADS (similar to how Waymo adapts NHTSA
scenarios as tests [54]). Ego’s goal is to drive through the sce-
nario (from start to goal point) and avoid a collision. The goal of
an SDV is to interact with ego using target parameters defined
by the tester, e.g., achieving a certain time gap before braking.
The overall scenario goal is to replicate the pre-crash events
as described by NHTSA, leading to a crash or a near-crash.
If execution differs by either a safe outcome (vehicles never
interact or interact differently than intended) or another type of
crash, the scenario execution fails. After modeling the scenarios,
we simulate them in the reference implementation (Sec. IV).

As part of the comparison of expressiveness with the baseline,
we classify the type of SDV behavior required in each scenario

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

as static or dynamic with respect to three elements: path shapes,
speed profiles, and behavior triggers. Behavior triggers are
conditions triggering the required changes in paths and speed
profiles during the scenario (Table I). Scenarios that involve
static behavior for all three elements, i.e., fixed paths and speed
profiles for each SDV and their starting triggers, can be easily
designed with predefined trajectories from start to finish and
do not benefit significantly from a dynamic model (stat,stat,stat
in Table I). Scenarios that require dynamic behaviors, but
the behaviors can be expressed as sets of static paths and
velocity profiles with dynamic triggers to select among them
(stat,stat,dyn in Table I), can still be modeled using predefined
trajectories with reasonable effort. Finally, scenarios that require
dynamic path or velocity profile or both (dyn,stat,*; stat,dyn,*;
and dyn,dyn,* in Table I) are impractical to be modeled using
predefined trajectories, but are enabled by the proposed SDV
model. For example, the cut-in scenario has a continuous space
of paths and speed profiles, and a dynamic trajectory needs
to be planned based on the ego behavior, which may vary
from execution to execution. We note that using the NHTSA
descriptions of the scenarios as a source, many scenario
variants are possible. Our classification is based on the minimal
behavior required to reproduce the critical event occurring
immediately prior to a crash as described by NHTSA; however,
added elements, such as additional vehicles, might change the
static classification to a dynamic one, but not the other way.

Results: Due to limited space, we focus on the main findings
here. The full list of scenarios is in the online repository.2

Expressiveness: All 18 scenarios except for one variant of #17
are successfully expressed using the SDV model. We identify 14
scenarios (78%) that depend on dynamic path or velocity profile,
or both, and thus are impractical for the baseline. For instance, a
vehicle leaving a parking position in scenario #17 must start this
maneuver only when ego is approaching and adjust its trajectory,
in one of the variants, to merge ahead of ego. While the vehicle
must challenge the ADS, an unavoidable lateral crash into ego
would not be useful as a test scenario. To achieve the scenario
goal, the vehicle must be able to generate a trajectory relative to
ego’s motion at run time. The same requirement applies to all
lane-change scenarios (#16-#19). For crossing-path scenarios
#30 and #31, the velocity profile must be dynamically planned.
The SDV models enable us to successfully express these
dynamic behaviors, which are infeasible with the baseline,
resulting in a higher expressiveness. One variant of Scenario
#17 “Parked Vehicle SD” requires the parked vehicle to join
traffic by making a U-turn, and this maneuver is currently not
supported by the implementation of trajectory generation.

A total of four scenarios (22%) require only static trajectories
(stat,stat,* in Table I) and thus can be designed with the baseline.
For instance, in the rear-end scenario #25 both path shape and
speed profile can be generated offline and expressed as prede-
fined trajectories with only a trigger to activate the deceleration
as ego approaches. In such examples, the SDV model does not
increase expressiveness. However, it adds two advantages: (i)
conciseness, by defining the scenario at a higher level of abstrac-
tion using target parameters instead of detailed trajectories, and

2https://github.com/rodrigoqueiroz/geoscenarioserver

(ii) flexibility, by allowing the scenario to be replicated in differ-
ent road geometries without changing the behavior definition.

Execution: In 17 scenarios, vehicles perform as expected,
and the scenario ends with a crash or near-crash as described in
the NHTSA report. The performance deviates from the design
in the scenario #16 “Vehicle(s) Turning – Same Direction.” The
assigned behavior requires that vehicles perform a maneuver
that violates the legal road-network connectivity. Since the
current implementation relies on the Lanelet map to constrain
the driving space, the map requires an adaptation to execute
the scenario correctly.

Reuse: The composable nature of behavior trees allows
us to reuse most of them, i.e., use each tree in two or more
scenarios, since there is significant commonality in the driving
task for the different scenarios. In most scenarios, vehicles start
by performing normal lane maintenance until an unexpected
event occurs, such as a risky behavior of another vehicle. The
differences among scenarios emerge in such events and are
usually modeled at the highest levels of the main behavior tree
for the given scenario. We call them the “scenario-trees.” The
remaining tasks are reusable and performed using “sub-trees”
(e.g., performing a lane-change). This reuse pattern is not part
of the original behavior-tree concept, but it has emerged during
this experiment when trying to maximize reuse. In some
instances, a simple overriding of parameters for conditions
or maneuvers during the sub-tree composition is sufficient to
adapt the behavior from one scenario to another and achieve
the scenario objective with 100% reuse (see Internal Reuse
Level in Table I). Overall, the average internal reuse level
(weighted by the size of behavior trees in each scenario) is
0.93 for all nodes, and 0.81 for executed nodes.

The experience modeling and running NHTSA scenarios
reveals how effective the SDV model can be in ADS scenario
development. The model enables expressing highly dynamic be-
haviors, fosters reuse, and can successfully execute most scenar-
ios in simulation. Vehicle interactions involving lane changing,
merging, and crossing paths are severely limited or impractical
using the baseline of predefined trajectories. Thus, such
interactive scenarios benefit most from the SDV model. The
limitations we identify are due to missing underlying maneuvers
(such as a U-turn) or the map constraints that prevent certain
vehicle movements. We will address them in future work.

B. Vehicle Motion (RQ2)

As the primary goal is to simulate human-operated vehicles, a
good model must reflect the human-driving behavior and how
vehicles move in naturalistic traffic conditions. To evaluate
the motion realism, we use SDV models to replicate scenarios
collected from urban traffic and compare their behavior
with real vehicles. It is unreasonable to expect SDV models
to drive exactly like the empirical vehicle, since not even
humans drive equally. However, our model is designed to
be highly configurable and adapt to different driving styles.
With the proper configuration in the calibration process,
we expect that SDV models can approximate the behavior
of the empirical vehicles to a high degree given the same
environment conditions. We use data from a busy signalized

https://github.com/rodrigoqueiroz/geoscenarioserver

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

TABLE I
SCENARIOS AND PERFORMANCE

ID Group Scenario Pa
th

Sh
ap

e

Sp
ee

d
Pr

ofi
le

B
eh

av
io

r
Tr

ig
ge

r

E
xp

re
ss

iv
en

es
s

E
xe

cu
tio

n
IR

L

IR
L

ex
ec

4 CP Running Red Light stat dyn stat S S 0.83 0.60
5 CP Running Stop Sign stat dyn dyn S S 1.00 1.00
15 B Backing Up

Into Another Vehicle
stat stat dyn S S 0.91 0.60

16 LC Turning SD dyn dyn dyn S S* 0.87 0.63
17 LC Parking SD dyn dyn dyn P P 0.84 0.71
18 LC Changing Lanes SD dyn dyn dyn S S 0.89 0.79
19 LC Drifting SD dyn dyn dyn S S 0.79 0.71
20 OD Making Maneuver OD dyn dyn dyn S S 0.90 0.84
21 OD Not Making Maneuver OD dyn dyn dyn S S 0.76 0.50
22 RE Following Vehicle

Making Maneuver
dyn dyn dyn S S 1.00 1.00

23 RE Lead Vehicle Accelerating stat stat dyn S S 0.90 0.75
24 RE Lead Vehicle at Lower Speed stat stat stat S S 1.00 1.00
25 RE Lead Vehicle Decelerating stat stat dyn S S 0.90 0.75
27 CP Left-Turn Across Path/OD

at SJ
stat dyn dyn S S 0.90 0.75

28 CP Vehicle Turning Right at SJ stat dyn dyn S S 0.99 0.94
29 CP Left-Turn Across Path/OD

at NSJ
stat dyn dyn S S 0.98 0.93

30 CP Straight Crossing Paths at NSJ stat dyn dyn S S 0.94 0.81
31 CP Vehicle Turning at NSJ stat dyn dyn S S 0.94 0.81

Acronyms: B: Backing up, CP = Crossing Paths, LC = Lane Change, OD =
Opposite Direction, RE = Rear-end, SD = Same Direction, SJ = Signalized
Junction, NSJ = Non-Signalized Junction. Path Shape, Speed Profile, and

Behavior Trigger are requirements for vehicle behavior that can be static (stat)
or dynamic (dyn). Expressiveness and Execution show the degree in which a

scenario is modeled and correctly executed, respectively (S=successfully,
P=partially, F=Failed). The Internal Reuse Level (IRL) is computed with all
Behavior tree nodes, and only for nodes that are executed in the simulation
(IRL exec). *Scenario #16 required a map adaptation to perform correctly.

intersection during mid-day traffic in Waterloo, Canada, which
is part of the Waterloo Multi-Agent Traffic Dataset [55]. The
“birds-eye” video was collected using a drone and processed
to label and track pedestrians and vehicles (Fig. 7).
This experiment follows four steps:

1) Data preparation: We classify the vehicle trajectories in
the dataset into five scenario types based on the main
maneuver they represent: (i) vehicle crossing intersection
unconstrained (free), (ii) vehicle stopping (red light),
(iii) vehicle resuming driving (green light), (iv) vehicle
following a lead through the intersection (follow), and
(v) vehicle partly following a lead when the lead merges
or leaves mid-scenario (free/follow). In cases where a
vehicle stops at a signal light, we split the trajectory into
two scenarios, namely (ii) and (iii), in order to eliminate
the waiting state. Each such classified vehicle trajectory
represents an individual experimental trial.

2) Test generation: For each classified vehicle trajectory,
we identify the traffic conditions that may affect how
the vehicle is driving, e.g., signal light states and all
other vehicles and pedestrians that may affect it, to be
reproduced in simulation. Each classified vehicle trajectory
is used as a reference vehicle for a single test. We
generate a new GeoScenario test replacing the reference

Fig. 7. A snapshot of the signalized intersection used for experiments and its
corresponding simulation on the right.

vehicle with an SDV model instance with a standard-
driver behavior tree and using the same start state (velocity
and position in the intersection), and replicate the traffic
conditions to ensure the driving task is influenced by
the same factors. The standard-driver behavior tree is
capable of performing each of the five maneuvers. We also
assign a route goal to the model based on the last known
position of the empirical reference vehicle to ensure the
simulated vehicle will navigate the intersection towards
the same exit lane. All other relevant empirical vehicles
and pedestrians are included in the test as agents with
predefined trajectories, and the signal light phases are also
replicated. We generate 100 test scenarios and manually
review the correctness of the identified traffic conditions.

3) Calibration: While each simulated reference uses the same
standard-driver behavior tree, it needs a behavior-tree
configuration to replicate the driving style of its empirical
counterpart. We use a set of rules to automatically
analyze each empirical reference trajectory and generate
a configuration for it by extracting a set of high-level
driving-style parameter values and value ranges, including
maximum and average velocities, lateral displacement on
the lane, stopping distance to target, reaction times, and
time gap to other vehicles. We adjust the SDV parameter
ranges to target similar values.

4) Simulation: We run two simulations per scenario using
the SDV model, one with a default configuration before
the calibration and another one after the calibration, and
export the resulting trajectories as a discrete set of the
vehicle states in the simulation frequency at 30 Hz. The
default configuration uses nominal naturalistic driving
parameters, such as zero offset from the lane centerline
and a time gap range of 1.8..2.2 s [56].

The SDV performance is assessed using a measure of
distance between the simulated trajectory T1 and the empirical
reference trajectory T2, which takes into account both their
spatial and temporal characteristics. The shorter the distance,
the more similar the motion behavior of the simulated and
the empirical vehicle. We use the spatio-temporal Euclidean
distance (STED) [57], which represents the average Euclidean
distance between positions of the respective vehicles, T1(t)
and T2(t), along their respective trajectories T1 and T2, over
the interval l in which both trajectories exist:

dSTED(T1, T2) =

∫
l
d(T1(t), T2(t)) dt

|l|
(5)

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

Results: Figure 8 shows the distribution of STED before and
after calibration per scenario type. The majority of simulated
trajectories are already fairly similar to their empirical reference
even before the calibration with an average STED of 4.27 m.
A review of the simulated trajectories shows a similar decision
making patterns, such as reacting to traffic lights and vehicles
ahead, to the empirical ones. However, the main differences
are observed in the speed profiles, lateral placement on the
lane, time gaps, and various delays and reaction times, all
indicative of different driving styles. The calibration brings
the simulated trajectories significantly closer to their empirical
counterparts: average STED for all 100 scenarios reduces from
4.27 m to 1.24 m. At an individual level, calibration improves
the performance in 82 scenarios. Although the performance is
worse for 18 scenarios, it is only slightly worse for 16 of them,
with less than 1 m deterioration. Only two scenarios deteriorated
more significantly, by 1.4 m and 1.9 m. The latter deviation is
due to an erratic driving style of the empirical reference vehicle,
which accelerates hard when resuming driving on green and
then decelerates for no apparent reason. Such erratic behavior
could be replicated by a dedicated maneuver.

Fig. 8. Performance (Eq. 5) for all scenarios and per type, before (b) and
after (a) calibration, measured using STED in meters. Orange lines represent
medians, and green triangles represent averages.

Figure 9 shows the paths and speed profiles of sample
individual scenarios. Plot (a) shows the reference vehicle 5
reacting to a red light. The path before calibration shows the
simulated vehicle stop at the stop line, but the empirical vehicle
stops about 2.5 m before the line. After calibration, both the
simulated and empirical paths match up almost perfectly, with
an STED of 17 cm, and a maximum distance of 31 cm. The
calibrated speed profile also closely matches the empirical one.
Plot (b) shows vehicle 97 crossing the intersection southwards,
while already following a lead vehicle. The black dashed line
shows the lead vehicle’s speed profile, which is fairly constant
throughout the scenario. The initially slower reference vehicle
accelerates to match the lead’s speed. The calibration improves
the default configuration to match the more aggressive time-gap
of the empirical vehicle, resulting in closely matched speed
profile and reducing the STED from 2.37 m to 17 cm. In rare
cases, the calibration does not improve performance, as shown
in plot (c). A vehicle approaches the intersection with a red
light and an already stopped vehicle ahead. The reference
vehicle can resume driving on the green light, but needs to

Fig. 9. Paths and speed profiles for three sample scenarios. Empirical vehicles
in red; SDV models in dashed blue (before calibration) and solid blue (after
calibration). Eq. 5 defines performance using the spatio-temporal Euclidean
distance (STED).

keep distance from the lead vehicle. The simulated vehicle
resumes with a smaller delay compared to the empirical one.

In summary, SDV models can closely reproduce the behavior
of human-operated vehicles under the same traffic conditions.
The model calibration can address varying driving styles and
significantly increase the similarities in the trajectories. In
some scenarios, such as in Fig. 9 (a), the simulated trajectory
after calibration is in essence indistinguishable from the
empirical one, with maximum difference of 31 cm. In some
scenarios the human behaves unexpectedly, however, and the
current automatic calibration process cannot replicate such
behaviors, but they could be modeled in the behavior trees
as additional maneuvers.

C. Application (RQ3)

We run an in-depth case study to evaluate how the model
performs in a real ADS testing environment and answer RQ3.
We choose the cut-in lane change NHTSA scenario (#18 in
Table I) to test an actual ADS software as the subject system.
In this scenario, a vehicle changes lanes at a non-junction and
merges closely in front of the ego traveling in a adjacent lane
in the same direction. Cut-in maneuvers from other drivers
pose challenges to the ADS and if not handled properly can
lead to crashes. Thus, they represent an important test case.

The test aims to evaluate the impact of key vehicle
interaction parameters, such as relative velocity and gap,
on the likelihood and crash severity. The non-deterministic
behavior of the subject ADS makes simulating this type
of scenario challenging, however. Reaching the desired test
parameter values while performing realistic vehicle interactions
requires a reactive model, capable of adapting and re-planning
trajectories as the scenario unfolds.

The case study has an explorative nature, with the objective
to generate practical insights of applying the SDV model to
test a real ADS, including identifying potential limitations.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

1) System under test: We test WISE ADS, developed at the
University of Waterloo.3 The ADS software consists of a set
of ROS modules implementing object-detection and tracking,
occupancy and high-definition mapping, localization and state
estimation, maneuver and trajectory planning, and control. The
software can operate a Lincoln MKZ Hybrid, equipped with a
drive-by-wire interface and a suite of LiDAR, camera, GPS, and
inertial sensors, in automated mode at SAE level 3 on public
roads in Waterloo. We test the ADS software in simulation,
using WISE Sim with the GeoScenario Server implementing
the SDV model (see Sec. IV).

2) Test scenario: The cut-in behavior is expressed as a
behavior tree similar to Fig. 4 and assigned to an SDV model
instance. According to this behavior tree, the vehicle must
reach a certain acceptance (rear) gap before performing the
cut-in maneuver and then achieve a certain target (rear) gap to
ego. The behavior tree calls the standard-driver behavior tree
to maintain its current lane, parameterized with a target speed
of 14 m/s (+-10%), which is slightly higher than the road speed
limit. The simulation plans candidate trajectories by sampling
6 target velocities from this target range (uniformly, by default).
After a delay of 4 s to allow the vehicle to pick up pace, it
starts checking for the acceptance distance gap of 5 m (+-10%)
for a lane change to the right (lane=-1), on which ego drives
at the road speed limit. Once the acceptance gap is satisfied,
the lane change is triggered, with a target distance gap of 5 m
and a relative velocity of -3 m/s (∆s=(5,-3)). The experiment
repeats the scenario with different combinations of parameters
to evaluate how ego handles a variety of cut-in trajectories and
find configurations that are more likely cause a crash.

Results: As expected, more aggressive cut-ins (shorter
acceptance distance gap, shorter target distance gap, and lower
target velocity) are more likely to cause collisions, but the
response of the ADS to different parameter combinations of
the cut-in maneuver is non-obvious (see Table II). Scenarios #7
and #8 are parameterized with the same short acceptance gap
∆da=2 m and the same target relative velocity ∆vt=-5 m/s, but
#8 has a smaller target distance gap, ∆dt=-5 m, compared to
∆dt=-2 m for #7. As a result, #8 ends in a collision. Note that
∆dt and ∆vt are planned relative to the predicted ego location
at the end of the cut-in maneuver, assuming ego continues
at a constant velocity. Thus, although a negative ∆dt would
guarantee a collision if ego maintained its velocity, ego is
likely to brake and thus a negative ∆dt does not necessarily
result in a collision. Scenarios #9-11 use a larger acceptance
gap, with ∆da=5 m. As a result, although #9 has the same
target parameters as #8, a collision is avoided, since the larger
acceptance gap gives ego more time to react. Increasing the
target deltas in #11 results in a collision, however. Figure 10
shows scenario #8 with the SDV’s trajectory generation (a-
b), its ground-truth perspective (c), and the ADS’s internal
perception of the scenario (d). The ADS detects the SDV
(yellow bounding box), and the ADS’s tracker predicts the
SDV’s future trajectory (bold green line) as in conflict with
the ego’s lane. Although ego initiates an emergency stop, the

3https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/
projects/wise-automated-driving-system

Fig. 10. One of the simulation scenarios that results in a crash; in (a) and (b),
the SDV trajectory generation in Frénet Frame targeting ego at two different
moments (optimal trajectory in blue and infeasible ones in red); in (c) the
SDV simulation view in Cartesian coordinates; and in (d) the ADS perception
(circles represent the lidar simulation, with the ego located at their center)

rear-end collision is not avoided.
This experiment demonstrates how the SDV model can be

used with a real ADS to search for scenarios and parameters
where the system may not be able avoid a collision. We found
that using another SDV instance as placeholder for ego enables
a rapid iterative development of test scenarios. The iterations are
needed to ensure the correct behavior of the cutting-in vehicle
and select reasonable ranges of test parameters, before running
the more time-consuming simulation with ego controlled by
the ADS. Finally, the experiment results also highlight the
importance of being able to plan the SDV maneuver trajectories
dynamically and influence their shape via parameters.

D. Scalability (RQ4)

We evaluate the SDV model scalability to see if it can support
scenarios with heavy traffic. To support such scenarios, the
model must be able to scale traffic density without any
significant degradation of the simulation performance or the
quality of the planned trajectories.

1) Reference implementation and performance requirements:
The experiment uses the reference implementation (Sec. IV).
To provide a sufficient simulation update rate, the SDVPlanner
instances target a planning rate of 3 Hz, and the TrafficSim
process targets updating the position of all vehicles at 30 Hz.

TABLE II
SIMULATION PARAMETERS FOR SDV BEHAVIOR AND RESULTS

SDV Config Observed

∆da ∆dt ∆vt ∆da Coll. vSDV vEgo maneuver

7 2 -2 -5 2.07 n - - -
8 2 -5 -5 2.05 y 10.89 13.16 emergency stop
9 5 -5 -5 5.49 n - - -
10 5 -5 -10 5.50 n - - stop
11 5 -10 -10 5.60 y 7.60 12.15 -

https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-automated-driving-system
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-automated-driving-system

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

Planning is a highly time-critical task, which needs to be
executed within its target period of 333 ms (3 Hz). If a
vehicle misses the target time to generate its plan, it likely
affects the quality of its trajectory and the resulting motion.
Furthermore, a long overrun can affect the SDV model’s ability
to predict the traffic state, resulting in sub-optimal trajectories
and even unintended collisions. The state transformation and
update is performed by TrafficSim and must be completed
for all vehicles within 33 ms (30 Hz). A small exceedance, if
consistent, may be acceptable, as it would slightly reduce the
update frequency below 30 Hz without compromising the actual
vehicle motion. The experiment is executed on an Intel Core
i7-6800K (3.40 GHz), with 32 GB RAM and Ubuntu 18.04.5.

2) Scenarios: We use two long-running scenarios, each with
a two-minute duration, and vary the number of SDVs, up to
20. In each scenario, the SDVs travel in one lane and form
a virtual platoon, simulating heavy traffic. In scenario A, the
SDVs travel without any disturbance, and in scenario B, they
need to steer to avoid a static obstacle in their lane. When
running scenario B, the object collision checking for obstacle
avoidance is activated. The purpose of scenario B is to show
the impact of object collision checking on scalability, since it
is computationally expensive. Each vehicle travelling behind
another one is expected to observe a safe following distance.

3) Metrics: We evaluate the adherence to the target rates
using the following metrics: Target Rate Compliance (TRC),
defined as the % of simulation (execution) ticks from all
vehicles that adhere to the target tick time of 33 ms (30 Hz);
the maximum tick time; the Target Planning Rate Compliance
(TPRC), defined as the % of planning cycles from all vehicles
that adhere to the target time of 333 ms (3 Hz); and the
maximum planning time.

Results:Both scenarios with up to 20 vehicles execute
successfully, without any collisions or lane boundary violations.
The planning adheres to the target rate with almost 100%, with
99.8% being the worst case (Table III). However, execution
deteriorates significantly between 10 and 15 vehicles, especially
when the collision checking is active, plunging from 98.49%
to 78.58%. Such a deterioration of the target rate to update the
state of all vehicles may introduce inconsistencies and confuse
the ADS under test, such as inducing significant errors in its
object tracking system. However, reducing the update rate from
30 Hz to 20 Hz results in near perfect adherence for up to 20 ve-
hicles when no collision checking is used and up to 15 vehicles
with the collision checking active. Thus, scenarios with up to
10 SDV instances are easily handled by the reference implemen-
tation, and scaling to 20 instances requires reducing the update
rate. For scenarios requiring more vehicles, the traffic can mix
SDV instances for interactions with ego and vehicles based on
predefined trajectories, with negligible computing cost.

VI. CONCLUSION

We presented the SDV model to express and execute scenarios
for ADS scenario-based testing in simulation. The model
encapsulates driver and vehicle as a single entity with an
architecture that provides a user-oriented language to coordinate
the vehicle behavior and motion planning that optimizes for
realism and achieving the scenario test objective. In particular,

TABLE III
PERFORMANCE WITH MULTIPLE SCENARIO CONFIGURATIONS

id vehicles obstacle coll. TRC max tick TPRC max plan

3 10 inactive 0 98.44% 0.042s 100.00% 0.333s
4 15 inactive 0 92.28% 0.055s 99.94% 0.338s
5 20 inactive 0 61.90% 0.052s 100.00% 0.333s
8 10 active 0 98.49% 0.041s 99.94% 0.338s
9 15 active 0 78.58% 0.052s 99.80% 0.340s
10 20 active 0 55.65% 0.065s 99.91% 0.343s

behavior trees provide a high-level description of discrete
decisions, with a high-level of abstraction and parameterization
to support controllability and reuse. Furthermore, dynamic
trajectory planning allows for flexible adaptation of the SDV
trajectories to different road geometries and achieving the test
objective despite varying and unpredictable ego behaviors.

The evaluation shows that our proposed approach supports
effective test scenario development and execution using the
NHTSA vehicle-to-vehicle pre-crash scenarios, with high
internal reuse of over 80 %. The analysis also shows that
the majority of scenarios require dynamic trajectory planning,
benefiting from the SDV model compared to the baseline. The
evaluation demonstrates the ability of the SDV model to faith-
fully reproduce real-world vehicle behavior, including different
driving styles by adjusting parameters, with an average spatio-
temporal trajectory distance of 1.24 m. It also allows custom
behaviors and misbehaviors by adding dedicated conditions
and maneuvers. The reference implementation demonstrates
that the SDV model scales to execute scenarios with 10-20
highly interactive vehicles, and additional optimizations, such as
reducing the number of sampled trajectories for vehicles farther
away from ego, allow for further scaling. Finally, the application
of the SDV model to test WISE ADS in the cut-in scenario con-
firms the usefulness of the model and offers practical insights.
Among others, the ability to control the shape of the cut-in
trajectories uncovers the varied response of the ADS to different
trajectories, showing that not only the target gap and velocity,
but also the acceptance gap impact the likelihood of a collision.
Furthermore, using an SDV model instance in place of ego helps
accelerate the development of the test scenario and parameter
selection to tune the trajectories of the agent that challenges ego.

In future work, we plan several model extensions and new
capabilities that exploit the model. First, we plan to expand
the model with new maneuvers and configuration options
based on additional scenarios, harvested from a wider range
of naturalistic data, such as the additional locations in the
Waterloo dataset [55] and the multi-country INTERACTION
dataset [58]. We plan to improve the auto-calibration process
and further automate creation of behavior trees and their param-
eterization to approximate the naturalistic traffic. We will also
expand the behavior trees and maneuvers for interaction with
pedestrians [44]. Finally, we plan to exploit the model in gen-
erating new scenarios by injecting road-user misbehaviors into
behavior trees, such as simulating distraction [59] and ignoring
occlusions [60]. The SDV model implementation and toolset
to design and run scenarios is publicly available and can be
integrated with any simulation environment via co-simulation.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

ACKNOWLEDGMENT

The authors acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada, Renesas
Electronics Corporation, Japan Science and Technology
Agency ERATO Project “HASUO Metamathematics for
Systems, the PNRR MUR project VITALITY (ECS00000041),
Spoke 2 ASTRA - “Advanced Space Technologies and Research
Alliance”, of the PNRR MUR project CHANGES (PE0000020),
Spoke 5 “Science and Technologies for Sustainable Diagnostics
of Cultural Heritage”, the PRIN project P2022RSW5W
- RoboChor: Robot Choreography, the PRIN project
2022JKA4SL - HALO: etHical-aware AdjustabLe autOnomous
systems, and of the MUR (Italy) Department of Excellence
2023 - 2027 for GSSI. The work of P. Pelliccione was also
partially supported by the Centre of EXcellence on Connected,
Geo-Localized and Cybersecure Vehicles (EX-Emerge), funded
by the Italian Government under CIPE resolution n. 70/2017
(Aug. 7, 2017). This work was partially supported by the
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by Knut and Alice Wallenberg Foundation.

REFERENCES

[1] SAE, “Taxonomy and Definitions for Terms Related to On-Road Motor
Vehicle Automated Driving Systems (SAE J3016),” SAE International,
Tech. Rep., 2014.

[2] W. G. Najm, J. D. Smith, and M. Yanagisawa, “Pre-Crash Scenario Topol-
ogy for Crash Avoidance Research,” U.S. Department of Transportation,
NHTSA, Tech. Rep., April 2007.

[3] A. Wasowski and T. Berger, Domain-specific Languages: Effective
Modeling, Automation, and Reuse. Springer, 2023.

[4] R. Lämmel, Software Languages. Springer, 2018.
[5] R. Queiroz, T. Berger, and K. Czarnecki, “GeoScenario: An open DSL

for autonomous driving scenario representation,” in IEEE Intelligent
Vehicles Symposium (IV), 2019.

[6] OpenScenario. https://www.asam.net/standards/detail/openscenario.
[7] Measurable Scenario Description Language (M-SDL).

https://www.foretellix.com/open-language/.
[8] A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent driver

model to access the impact of driving strategies on traffic capacity,”
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 368, no. 1928, pp. 4585–4605,
Oct. 2010.

[9] J. A. Michon, A Critical View of Driver Behavior Models: What Do
We Know, What Should We Do? Boston, MA: Springer US, 1985, pp.
485–524.

[10] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An
introduction. CRC Press, 2018.

[11] R. Ghzouli, T. Berger, E. B. Johnsen, A. Wasowski, and S. Dragule,
“Behavior trees and state machines in robotics applications,” IEEE
Transactions on Software Engineering, vol. 49, no. 9, pp. 4243–4267,
2023.

[12] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software
Testing. New York, NY, USA: John Wiley & Sons, Inc., 2001.

[13] ISO/FDIS 26262:1994, Road vehicles – Functional safety. ISO, Geneva,
Switzerland, 2011.

[14] ISO-21448:2022, Road vehicles – Safety of the intended functionality.
ISO, Geneva, Switzerland, 2022.

[15] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable
benchmarks for motion planning on roads,” in IEEE Intelligent Vehicles
Symposium (IV), June 2017, pp. 719–726.

[16] V. Punzo, M. T. Borzacchiello, and B. Ciuffo, “On the assessment of
vehicle trajectory data accuracy and application to the next generation
simulation (NGSIM) program data,” Transportation Research Part C:
Emerging Technologies, 2011.

[17] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in 31st IEEE/ACM Int. Conference on Automated
Software Engineering (ASE), 2016.

[18] ——, “Testing vision-based control systems using learnable evolutionary
algorithms,” in ICSE, 2018.

[19] OpenDRIVE. https://www.opendrive.com.
[20] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-

Vincentelli, and S. A. Seshia, “Scenic: A language for scenario speci-
fication and scene generation,” in Proc. 40th ACM SIGPLAN Conf. on
Programming Language Design and Implementation. New York, USA:
ACM, 2019, p. 63–78.

[21] X. Zhang, S. Khastgir, and P. Jennings, “Scenario description language
for automated driving systems: A two level abstraction approach,” in
2020 IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), 2020.

[22] B. Schütt, T. Braun, S. Otten, and E. Sax, “Sceml: A graphical
modeling framework for scenario-based testing of autonomous vehicles,”
in Proc. 23rd ACM/IEEE Int. Conference on Model Driven Engineering
Languages and Systems. New York, NY, USA: ACM, 2020, p. 114–120.

[23] J. Sewall, D. Wilkie, P. C. Merrell, and M. C. Lin, “Continuum traffic
simulation,” Computer Graphics Forum, vol. 29, 2010.

[24] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang, M. C. Lin, and Z. Deng, “A
survey on visual traffic simulation: Models, evaluations, and applications
in autonomous driving,” Computer Graphics Forum, vol. 39, 2020.

[25] P. Gipps, “A behavioural car-following model for computer simulation,”
Transportation Research Part B: Methodological, vol. 15, no. 2, pp.
105–111, 1981.

[26] A. Kesting, M. Treiber, and D. Helbing, “General Lane-Changing Model
MOBIL for Car-Following Models,” Transportation Research Record,
vol. 1999, no. 1, pp. 86–94, 2007.

[27] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proc. 1st Annual Conference on
Robot Learning, 2017.

[28] D. C. Gazis, R. Herman, and R. W. Rothery, “Nonlinear Follow-The-
Leader Models of Traffic Flow,” Operations Research, vol. 9, no. 4, pp.
545–567, 1961. [Online]. Available: https://www.jstor.org/stable/167126

[29] V. Milanés and S. E. Shladover, “Modeling cooperative and autonomous
adaptive cruise control dynamic responses using experimental
data,” Transportation Research Part C: Emerging Technologies,
vol. 48, pp. 285–300, Nov. 2014. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0968090X14002447

[30] P. Gipps, “A model for the structure of lane-changing decisions,”
Transportation Research Part B: Methodological, vol. 20, no. 5, pp.
403–414, Oct. 1986. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/0191261586900123

[31] S. Moridpour, M. sarvi, and G. Rose, “Modeling the lane changing execu-
tion of multi class vehicles under heavy traffic conditions,” Transportation
Research Record: Journal of the Transportation Research Board, 2010.

[32] S. Suo, S. Regalado, S. Casas, and R. Urtasun, “Trafficsim: Learning to
simulate realistic multi-agent behaviors,” 2021.

[33] L. Bergamini, Y. Ye, O. Scheel, L. Chen, C. Hu, L. Del Pero, B. Osiński,
H. Grimmett, and P. Ondruska, “Simnet: Learning reactive self-driving
simulations from real-world observations,” in IEEE Int. Conference on
Robotics and Automation (ICRA), 2021.

[34] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis, D. Anguelov,
M. Palatucci, B. A. White, and S. Whiteson, “Symphony: Learning
Realistic and Diverse Agents for Autonomous Driving Simulation,” IEEE
Int. Conference on Robotics and Automation (ICRA), 2022.

[35] Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray,
and M. Pavone, “Guided conditional diffusion for controllable traffic
simulation,” in IEEE Int. Conference on Robotics and Automation (ICRA),
2022.

[36] S. Suo, K. Wong, J. Xu, J. Tu, A. Cui, S. Casas, and R. Urtasun,
“Mixsim: A hierarchical framework for mixed reality traffic simulation,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[37] C. Jiang, A. Cornman, C. Park, B. Sapp, Y. Zhou, and D. Anguelov, “Mo-
tiondiffuser: Controllable multi-agent motion prediction using diffusion,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[38] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“Uncertainty estimation for Cross-dataset performance in Trajectory pre-
diction,” in ICRA 2022 Fresh Perspectives on the Future of Autonomous
Driving Workshop, 2022.

[39] R. Ghzouli, T. Berger, E. B. Johnsen, S. Dragule, and A. Wasowski,
“Behavior trees in action: A study of robotics applications,” in ACM
SIGPLAN Int. Conference on Software Language Engineering (SLE),
2020.

[40] M. Olsson, “Behavior trees for decision-making in autonomous driving,”
Master’s thesis, 2016.

https://www.asam.net/standards/detail/openscenario
https://www.foretellix.com/open-language/
https://www.opendrive.com
https://www.jstor.org/stable/167126
https://linkinghub.elsevier.com/retrieve/pii/S0968090X14002447
https://linkinghub.elsevier.com/retrieve/pii/S0968090X14002447
https://linkinghub.elsevier.com/retrieve/pii/0191261586900123
https://linkinghub.elsevier.com/retrieve/pii/0191261586900123

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 13

[41] G. Tadewos, L. Shamgah, and A. Karimoddini, “Automatic safe behaviour
tree synthesis for autonomous agents,” in IEEE 58th Conference on
Decision and Control (CDC), 2019.

[42] M. Jamal and A. Panov, “Adaptive maneuver planning for autonomous
vehicles using behavior tree on apollo platform,” in Artificial Intelligence
XXXVIII, M. Bramer and R. Ellis, Eds. Cham: Springer International
Publishing, 2021, pp. 327–340.

[43] S. Kang, H. Hao, Q. Dong, L. Meng, Y. Xue, and Y. Wu, “Behavior-Tree
Based Scenario Specification and Test Case Generation for Autonomous
Driving Simulation,” in 2022 2nd Int. Conference on Intelligent Technol-
ogy and Embedded Systems (ICITES), 2022.

[44] S. Larter, R. Queiroz, S. Sedwards, A. Sarkar, and K. Czarnecki, “A
hierarchical pedestrian behaviour model to generate realistic human
behaviour in traffic simulation,” in IEEE Intelligent Vehicles Symposium
(IV22), 2022.

[45] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenét Frame,” IEEE Int.
Conference on Robotics and Automation, pp. 987–993, 2010.

[46] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” 2018.

[47] SAE, “Taxonomy and Definitions for Terms Related to Automated
Driving System Behaviors and Maneuvers for On-Road Motor Vehicles
(SAE J3164),” SAE International, Tech. Rep., 2018.

[48] K. Czarnecki, “Automated Driving System (ADS) Task Analysis - Part
2: Structured Road Maneuvers,” Tech. Rep., 07 2018.

[49] Queiroz, Rodrigo, “Scenario Modeling and Execution for Simulation
Testing of Automated-Driving Systems,” Ph.D. dissertation, 2022.

[50] A. Takahashi, T. Hongo, Y. Ninomiya, and G. Sugimoto, “Local path
planning and motion control for agv in positioning,” in Proc. IEEE/RSJ
Int. Workshop on Intelligent Robots and Systems, 1989, pp. 392–397.

[51] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt,
and M. Mayr, “Lanelet2: A high-definition map framework for the future
of automated driving,” in Proc. IEEE Intell. Trans. Syst. Conf., Hawaii,
USA, November 2018.

[52] Robot Operating System (ROS). https://www.ros.org/.
[53] W. Frakes and C. Terry, “Software reuse: Metrics and models.” ACM

Comput. Surv., vol. 28, pp. 415–435, 06 1996.
[54] “Waymo safety report,” Tech. Rep., 09 2020. [Online]. Available:

https://waymo.com/safety/
[55] Waterloo Multi-Agent Traffic Dataset. http://wiselab.uwaterloo.ca/

waterloo-multi-agent-traffic-dataset.
[56] K. Czarnecki, “Automated Driving System (ADS) Task Analysis - Part

1: Basic Motion Control Tasks,” Tech. Rep., 07 2018.
[57] M. Nanni and D. Pedreschi, “Time-focused clustering of trajectories of

moving objects,” J. Intell. Inf. Syst., vol. 27, pp. 267–289, 11 2006.
[58] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,

J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “INTERACTION Dataset: An INTERnational, Adversarial
and Cooperative moTION Dataset in Interactive Driving Scenarios with
Semantic Maps,” arXiv:1910.03088 [cs, eess], 2019.

[59] J. van Lint and S. Calvert, “A generic multi-level framework for
microscopic traffic simulation—theory and an example case in modelling
driver distraction,” Transportation Research Part B: Methodological,
2018.

[60] M. Kahn, A. Sarkar, and K. Czarnecki, “I know you can’t see me:
Dynamic occlusion-aware safety validation of strategic planners for
autonomous vehicles using hypergames,” in IEEE Int. Conference on
Robotics and Automation (ICRA). IEEE, 2022.

Rodrigo Queiroz is a Ph.D. candidate at the Uni-
versity of Waterloo Faculty of Engineering (Canada)
and is part of the Waterloo Intelligent Systems En-
gineering (WISE) Lab. His research interest focuses
on validation & verification of autonomous driving
systems, safety-critical systems, motion planning,
vehicle simulation, and traffic simulation. He received
his Master’s degree in Computer Science from the
Federal University of Minas Gerais (UFMG) in
Brazil.

Divit Sharma is a graduate from the University
of Waterloo (Canada) with a Bachelor’s degree
in Computer Science. His interest and experience
lie in robotics simulation and game development.
His past work includes researching high-definition
context maps for autonomous vehicles and developing
interactive multi-agent simulation systems at the
WISE Lab. He also has internship experience at
Ike Robotics, a California-based self-driving startup,
and Behaviour Interactive, a Montreal-based game
development studio.

Ricardo Caldas is a Ph.D. student at the Chalmers
University of Technology in Sweden. His research
interest focuses on verification of autonomous sys-
tems. Lately, he has been investigating the interplay
between control theory and software engineering
principles for the engineering of resilient autonomous
systems, including mobile robots and self-driving
vehicles. He received his master’s degree in Computer
Science from the University of Brası́lia in Brazil in
2019.

Krzysztof Czarnecki is a Professor of Electrical and
Computer Engineering and a University Research
Chair at the University of Waterloo, where he heads
the Waterloo Intelligent Systems Engineering (WISE)
Laboratory. He is a leading expert in the safety of
automated driving systems (ADS), with focus on
assuring the safety of driving behavior and machine-
learned functions. He co-lead the development of the
first ADS tested on public roads in Canada in 2018.
As a member of standardization committees, he has
contributed to ISO 21448 (2nd edition), ISO 8800

(under development), and SAE J3164. He received the Premier’s Research
Excellence Award in 2004 and the British Computing Society in Upper Canada
Award for Outstanding Contributions to IT Industry in 2008. He has also
received eight Best Paper Awards, two ACM Distinguished Paper Awards, and
four Most Influential Paper Awards.

Sergio Garcı́a was a Ph.D. student at the University
of Gothenburg in Sweden when working on this paper.
He received the Ph.D. degree in September 2021.
His research interest focuses on robotics software
engineering, striving to understand the complexity
of the domain and analyzing its characteristics and
challenges to develop solutions based on them. He
received his master’s degree in electronics from the
University of Alcalá in Spain in 2016.

Thorsten Berger is a Professor in Computer Sci-
ence at Ruhr University Bochum in Germany. His
research focuses on automating software engineering
for the next generation of intelligent, autonomous,
and variant-rich software systems, exploring new
ways of software creation, analysis, and evolution.
He received the PhD degree in computer science
from the University of Leipzig in Germany in 2013.
Thereafter, he worked as a Postdoctoral Fellow at
the University of Waterloo in Canada and the IT
University of Copenhagen in Denmark, and as an

Associate Professor at Chalmers |University of Gothenburg in Sweden. He
received a fellowship from the Royal Swedish Academy of Sciences and the
Wallenberg Foundation, one of the highest recognitions for researchers in
Sweden. He received two best-paper and two most influential paper awards,
as well as his service was recognized with distinguished reviewer awards at
A* conferences.

https://www.ros.org/
https://waymo.com/safety/
http://wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset
http://wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 14

Patrizio Pelliccione is a Professor in Computer
Science and Director of the computer science area
at Gran Sasso Science Institute (GSSI, Italy). He
is also an adjunct professor at the University of
Bergen, Norway. His research topics are mainly in
software engineering, software architecture modeling
and verification, autonomous systems, and formal
methods. He received his Ph.D. in computer science
from the University of L’Aquila (Italy). Thereafter,
he worked as a senior researcher at the University of

Luxembourg in Luxembourg, then assistant professor
at the University of L’Aquila in Italy, then Associate Professor at both Chalmers
| University of Gothenburg in Sweden and University of L’Aquila. He has
been on the organization and program committees for several top conferences
and he is a reviewer for top journals in the software engineering domain. He
is very active in European and National projects. In his research activity, he
has collaborated with several companies. More information is available at
http://www.patriziopelliccione.com.

http://www.patriziopelliccione.com

	Introduction
	Background and Related Work
	The SDV Model
	Maneuver target sampling (pi.5.1:sample_targets)
	Trajectory generation (pi.5.2:gen_traj)
	Optimal trajectory selection (pi.5.3:optimize)

	Model Implementation
	Evaluation
	Effective Scenario Development (RQ1)
	Vehicle Motion (RQ2)
	Application (RQ3)
	System under test
	Test scenario

	Scalability (RQ4)
	Reference implementation and performance requirements
	Scenarios
	Metrics

	Conclusion
	References
	Biographies
	Rodrigo Queiroz
	Divit Sharma
	Ricardo Caldas
	Krzysztof Czarnecki
	Sergio García
	Thorsten Berger
	Patrizio Pelliccione

