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Abstract

Context: Robots can potentially collaborate to execute a variety of tasks in the service robots domain. However,
developing applications of service robots can be complex due to the high level of uncertainty and required level of
autonomy.

Objective: We aim at contributing an architecture for the development of applications, capable of coordinating multi-
robot missions, and that promotes modifiability and seamless integration of independently developed components.

Method: In this work, we introduce MissionControl: an ensemble-based architecture to coordinate missions of
heterogeneous robots to autonomously form coalitions. MissionControl comprises a component model and a runtime
environment. The component model specifies how the system can be extended for different robot’s behaviors and
environments. The runtime environment provides the processes required for coordinating the execution of missions at
runtime.

Results: We evaluated MissionControl in a simulated environment in the healthcare domain. We randomly gener-
ated 81 scenarios with uncertainty in the robots’ initial configurations. Then, each scenario was executed 8 times (i.e. 648
runs), where we evaluated the feasibility and efficiency of MissionControl for autonomously forming coalitions against
a baseline approach that uses a random robot allocation. Statistical hypotheses testing yielded that MissionControl
was able to achieve higher success rates while reducing the required time to conclude a mission, when compared to a
baseline approach. We also perform an evaluation of the key quality attributes of the architecture, i.e. modifiability and
integrability.

Conclusions: MissionControl demonstrated itself able to coordinate multi-robot missions by autonomously as-
signing missions. Despite the error-prone robotic mission environment and demanding computational resources,
MissionControl led to a significant increase in the success rate, while also decreasing the time required to conclude
robotic missions when compared to a baseline approach.

Keywords: Ensemble-based software architecture, cooperative heterogeneous robots, multi-robots systems, robotic
missions, Cyber-physical systems

1. Introduction

In the past few years, we have witnessed a growing
interest in Service Robots - robots that perform useful tasks
for humans or equipment excluding industrial automa-
tion applications [1]. Such robots are capable of replac-5

ing humans in dangerous and tedious tasks in various
domains [2]: healthcare, logistics, infrastructure mainte-
nance, education, entertainment, and domestic tasks. The
development of service robot applications is considered
more challenging than industrial robots as the robots are10

subject to highly dynamic environments, which require
robust behaviors [3].
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A way to expose a robust behaviour in the service
robotic domain is to make use of multi-robot systems
(MRS), where robots collaborate each other to execute 15

a variety of tasks. However, architecting MRS poses
various challenges [4] and the high-level of uncertainty
and required level of autonomy of the service robotic do-
main make the development of applications complex [3].
Moreover, it is desirable for an MRS to autonomously 20

allocate robots for each mission task. Nevertheless, un-
certainties regarding resources, navigation space, and ca-
pabilities of the robots might hinder such allocation diffi-
cult. For example, the set of available robots to perform
a mission with required capabilities might change, robots 25

might consume battery at a different rate, have a different
position, and battery level when a request is received. In
order to identify the best robot to assign a given task, the
MRS should be able to, e.g., evaluate whether a robot is
capable of executing the set of tasks defined in the mission 30
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(i.e., if it has the required skills), and estimate the time re-
quired by the robot to accomplish a task and if the robot
has the required battery charge to do so.

We argue that the multi-robots task allocation requires
a system architecture solution able to take into account the35

dynamic and uncertain environments of service robots,
the variability of the missions, and the characteristics of
the robots. Many architectures have been proposed for
robotic systems [5]. However, few works have focused
on how to coordinate a heterogeneous set of robots, fo-40

cusing on aspects such as mission continuity and safety
issues [6], cooperation between robot-robot/-human and
self-adaptation [7] and mission supervision and repair [8].
Moreover, there is still a gap in the literature regarding
contributions to systematically and autonomously coor-45

dinate robotic missions by forming coalitions of hetero-
geneous robots that share a common goal, as well as to
assign and execute complex MRS missions [9].

To fill this gap, we introduce MissionControl, an archi-
tecture to coordinate missions of heterogeneous robots.50

The architecture has been defined so to satisfy the key
quality attributes of modifiability and integrability. To
decouple between coordination and robot task execution,
MissionControl is divided in two parts: Mission Coordina-
tion and Task Execution. Mission Coordination builds on55

top of the ensembles-based systems [10]. Ensembles pro-
vide abstractions to form dynamic groups of robots em-
ploying membership functions and knowledge exchange
mappings between robots and the mission coordinator.
The coordinator keeps an updated knowledge-base about60

the properties of the available robot (e.g., capabilities, po-
sition, battery level, battery consumption rate), receives
mission requests from users, and realizes the coalition
formation and task allocation for received requests.

To allow the system to execute a variety of missions65

planned by a hierarchical task network (HTN) planner [11],
we created a component model in which a skill imple-
mentation is a Behavior Tree (BT) [12], and a mission is
executed by dynamically activating these skills. This ap-
proach allowed us to use an HTN planner for deliberation70

while using BTs for reactive behavior. By dividing the be-
havior of robots into independent componentizable skills,
we create an opportunity for (i) reuse of skills across ap-
plications and different robots models that share some
characteristics, and (ii) for different skills to be indepen-75

dently developed, potentially by different teams.
To suitably form the robots coalition, the coordinator

evaluates the set of tasks for a given role selecting the
robots that yield the best utility. This evaluation is exe-
cuted following the mission at hand, the collected knowl-80

edge about the available robots, and skills descriptors,
i.e. components that provide estimates for specific tasks
types. After forming the coalition, the selected robots re-
ceive their local mission plan, which is fulfilled by tasks.
Then, the planned tasks are performed by activating an85

associated skill from a library of skills available to the
robot.

The evaluation of MissionControl was carried out in
the MORSE simulator [13] through a series of controlled
experiments. The Lab Sample mission description was ex- 90

tracted from the RoboMAX [14] repository of exemplars
in the healthcare domain. Results show that MissionCon-
trol was able to (i) increase the success rate, while (ii)
decreasing the required time to conclude the tasks when
compared to a baseline approach that randomly assigns 95

robots. Moreover, we performed an evaluation of the key
quality attributes of the architecture, i.e. modifiability -
the ability of the architecture to be modified to suit a new
application - and integrability - the ability of the architec-
ture to integrate with existing systems. 100

In a nutshell, we summarize the contributions of this
paper as follows:

• An architecture for the development of applications
in the service robots domain constituted of compo-
nent and runtime models as well as processes for 105

coordinating the execution of MRS missions.

• A first artifact for the controlled experiment in the
Lab Samples Logistics specification [14] where a
simulation workflow was designed and implemented,
integrating ROS and the Morse simulator. For re- 110

peatability evidence, experiments were conducted
and the data collected was statistically analysed in
Jupyter Notebooks [15]. The simulation artifact and
data analysis scripts are also publicly available as
Open Science material [16]. 115

• A second artifact of an in-house inspection follow-
ing a guideline-based software architecture analysis
process [17]. The inspection process analysed Mis-
sionControl conformance against a comprehensive
set of guidelines through the lenses of modifiabil- 120

ity and integrability. As such, the artifact provides
a juxtaposition between design decisions follow-
ing classic software architecture literature [17] and
robotic software development [4]. For reproducibil-
ity purposes, the artifact provides a comprehensive 125

set of guidelines analysed and outcomes of the in-
spection process [16].

The rest of the paper is structured as follows: Section 3
presents the running example and the background for this
paper. We then present MissionControl architecture, the 130

main concepts, roles, and components in Section 4, to-
gether with its implementation in Section 5. In Section 6
we present how we evaluated our proposal. Finally, Sec-
tion 2 compares our work with other related work found
in the literature, and Section 7 summarizes the contribu- 135

tion.

2. Related Work

Some architectures have been proposed for coordina-
tion of heterogeneous set of (i) Unmanned Aerial Vehicles
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Figure 1: iHTN of the Lab Samples Logistics Exemplar

(UAVs) for exploring or for search and rescue unstruc-140

tured outdoor environments [18, 19, 20], or (ii) a mix of
UAVs and ground vehicles in planetary exploration ap-
plications [21]. These architectures focus on a range of
techniques for handling uncertainty related to the out-
doors environment, and interaction with human opera-145

tors. These approaches are typically restricted to a stable
set of robots, and a fixed set of possible elementary tasks
(e.g., take off, go to pose, scan region, take picture, land). In-
stead, in our work we focus on a highly reusable architec-
ture in the service robot domain, focusing on extensibility150

regarding robotic skills and mission.
There are various works in the literature that con-

tribute towards a skill-based approach to the development
of robotic applications. The work by Rovida et. al. [22]
presents the development process of robotic software ar-155

chitecture based on the skill formal model, resource mod-
els, and how these resources are used in the skill mod-
els to implement failure detection, redundant sensors or
processing, and alternatives skills to perform the mission.
Their work does not accommodate the task allocation pro-160

cess and particularly how a multi-robot task mission can
be fulfilled. As will be clearer later, their work could fit in
ours as an alternative to the skill management step of our
coordinator component.

SHAGE (Self-Healing, Adaptive, and Growing Soft-165

warE) [23] is a practical framework to support self-managed
software for intelligent service robots but not aimed at co-
ordination of heterogeneous robots with a focus on mis-
sion coordination and coalition formation, task allocation
while accounting for environment uncertainty.170

ORCA [24] is an open-source software project that em-
beds a decentralized fusion architecture and takes into
account human operators as an integral part of it. How-
ever, it lacks support for heterogeneous robot’s mission
coordination and coalition formation, while accounting 175

for environment uncertainty. RobMoSys [25] is a more
recent and prominent component-based initiative for ser-
vice robots. It creates an ecosystem for open development
in robotics, based on reusable components followed by a
conceptual model. On the software implementation side, 180

RobMoSys proposes layers of abstractions and a compo-
nent model for implementation at the component level.
In RobMoSys at the top-level layers, there are mission,
task, and skill layers. Nevertheless, they do not provide
the means to systematically coordinate and autonomously 185

allocate an MRS mission.
Hidden [8, 26] is a distributed architecture for su-

pervising multi-robot missions. This approach focuses
on reducing communications and proportional long-term
autonomy through mission repair, which is important 190

in the military context for which hidden was proposed.
SERA [7] is an architecture for MRS that supports collabo-
rations between robots and between humans and robots.
SERA decomposes a high-level specification of a mission
in individual robots plans. Our model of mission differs 195

from Hidden and SERA, as in our model available robots
form a pool from which we can assign sets of robots to re-
alize requested tasks. We elevate the level of autonomy by
automating the task assignment, considering resources re-
striction (e.g., battery) and non-functional properties (e.g., 200

time to conclude) before assigning robots to execute spe-
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cific tasks.
We can list a couple of approaches inside the service

robots domain among commercial use cases. We highlight
here those among the two most prominent cases. The first205

one is FetchCore™1. It offers a solution where the user can
build and annotate maps and build and schedule a work-
flow for a group of robots. The second approach is Mobile-
Planner™2, a software from Omron which brings “control,
safety, motion and other requirements together” in one210

software architecture. With MobilePlanner™, the user can
monitor an entire fleet, remotely control each robot, and
configure the process. Both FetchCore™and MobilePlan-
ner™can integrate heterogeneous robots. However, they
target specific processes, which lock the systems integra-215

tor to stick with the manufacturer and hostage from their
solutions. Therefore, their architecture solution is not able
to account for dynamic and uncertain scenarios of service
robots and neither the variability of robotic missions as
performed by MissionControl.220

There is extensive literature on Multi-Robot Task Al-
location comprehensively reported [9, 27, 28, 29]. Most
of the works focus on algorithms to carry out the plan-
ning and issues such as optimally and scalability of the
algorithms [29, 30, 31]. In this work, we focus on ar-225

chitectural issues as means to contribute to bridging the
gaps identified by Garcia et al. [3], specifically, we pro-
mote modularity, reusability, and levels of abstraction, so
that mission coordination may account for heterogeneity,
autonomy, and interoperability.230

3. Running example and background

3.1. Lab Samples Logistics
In the running example used throughout the paper, a

set of robots is deployed in a hospital environment. The
robots should transport samples from patient rooms to235

the laboratory. A nurse is responsible for collecting the
sample and can request delivery to the laboratory, iden-
tifying the room where the collection should take place.
The system must include a robot with a securely locked
drawer, which must then navigate to the collection room,240

identify the nurse, approach her, open the drawer, await
the deposit, close the drawer and then navigate to the lab-
oratory carrying the sample. In the laboratory, the sample
can be picked up by a robotic arm or laboratory personnel.
The robotic arm picks up samples, scans the barcode in245

each sample, sorts, and loads the samples into the entry
module of the analysis machines. This scenario is adapted
from the RoboMax repository of exemplars [14].

We assume that each robot is only able to perform one
task at a time and that tasks can be requested sponta-250

neously in an unknown timeline. In this way, the system

1https://fetchrobotics.com/resources/
fetchcore-software-brochure/

2https://automation.omron.com/pt/br/products/family/
Mobile%20Planner

allocates each task independently, taking into account the
knowledge about the state of the system at the moment
that the request is handled (i.e., the allocation follows an
Instant Allocation, Multi-Robot, Single Task model [32]). 255

When the system receives a task, it can have a varying
number of available robots, in different positions and with
different battery levels. If the system allocates a task to a
robot that does not have enough battery to conclude the
task, the robot can come to a critical low-battery failure 260

state in which it cannot move autonomously and should
be rescued by an operator.

3.2. Hierarchical Task Networks
Hierarchical Task Networks [11] is a formalism for task

planning. The Instantiated HTN (iHTN) formalism was 265

proposed in Lesire et al. [8] for formalizing a multi-robot
collaborative mission. The iHTN tree represents a plan
for an instance of a mission and it can be computed by an
HTN planner, such as Shop2 [33].

Figure 1 illustrates an iHTN for the ‘Lab Samples Lo- 270

gistics’ mission. Tasks (ellipses) are efforts that a set of
agents (robots or humans) must undertake. A task can be
abstract or concrete. Abstract tasks are refined by meth-
ods. Methods are linked to tasks of a lower level and a type
of ordering. The ordering can be sequential (diamond) or 275

unordered (parallelogram). Sequential ordering imposes
that tasks need to be executed in sequence so that a task
is dependent on the execution of the previous task. Un-
ordered methods indicate that there is no dependency
between tasks, and they can be performed in parallel (if 280

assigned to different robots) or sequenced due to resource
constraints.

A global mission specified in iHTN with tasks assigned
to different agents (robots and people) can be broken down
into one local plan for each agent, using an algorithm (pro- 285

vided by Lesire et al. [8]). Figure 2 illustrates the local
plans for ‘r1’ role in the ‘Lab Samples Logistics’ mission.
Only the tasks from the Global Plan that are assigned to
the agent are included in the local plan. Along with as-
signed tasks, synchronizations are added to the local plan. 290

Synchronizations are sent and wait for messages (SM, WM
tasks in Figure 2), where (i) an agent waits for a notification
before starting the execution of a task that has dependen-
cies with tasks assigned to another agent, and (ii) an agent
send a notification to other agents after completing a task 295

on which other agents depend. These synchronizations
allow the execution of a subset of possible MR collabora-
tions in which the tasks assigned to different robots have
inter-dependencies, but are not executed simultaneously
by more than one robot. 300

3.3. Ensembles
Ensemble-based software engineering is a paradigm

for developing systems in dynamic, open-ended environ-
ments [34]. DEEco [35, 10] is a component model for im-
plementing ensemble-based systems. The main abstrac- 305

tions provided by DEEco are components and ensembles.
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Component is an autonomous entity that relies solely
on its knowledge, i.e. a representation of its partial view
of the whole system, to guide its decisions. Component
consists of knowledge and processes. Knowledge is a set310

of fields representing the internal state of a component.
A process is defined by a function and a set of mappings
for inputs and outputs. The inputs mapping of the pro-
cess are fields of the knowledge which are passed to the
function as arguments, and the output mapping speci-315

fies the destination field of the return of the function. A
component can be either a coordinator or a member of an
ensemble.

An ensemble is a group of components, consisting of
a single coordinator and multiple members. An ensem-320

ble mediates communication between the coordinator and
members and it is defined by the roles of the accepted co-
ordinator and members, a membership condition, and
knowledge exchange mappings. A role is a selection of
knowledge fields that is required by the ensemble. The325

membership condition is a predicate on knowledge fields,
that dynamically determines which components should
be members of the ensemble. While the exchange map-
pings are rules that determine the knowledge exchanges
that should occur between the member components. A330

knowledge mapping is either coordinator to members or
members to coordinator. For a more detailed description
of the Distributed Emergent Ensembles of Components
(DEECo) model we refer the reader to [35].

4. The MissionControl Approach 335

In this section, we present MissionControl, an archi-
tecture for the coordination of missions of heterogeneous
robots. Prior to further delving into the MissionControl
architecture, we start by discussing the requirements for
mission coordination, for a certain class of missions simi- 340

lar to the Lab Samples Logistics scenario (Sec. 3.1). Then,
in Section 4.2, we present an overview of MissionControl
architecture. In Section 4.3 we explain how the architec-
ture is realized on top of the ensemble’s component model.
In Sections 4.4 and 4.5 we provide more details about the 345

Mission Coordination and Task Execution processes of
MissionControl, respectively. Whenever appropriate, we
also provide the design decisions behind MissionControl
architecture and their corresponding rationale.

4.1. Requirements for mission coordination 350

The system should coordinate a heterogeneous set of
robots that realize missions in the environment. Each
mission should be decomposed into local missions, that
are to be executed by specific roles within the plan. The
coordinating system receives mission requests, with mis- 355

sion plans, involving one or more roles assigned to robots,
and coordinates the execution by assigning robots to these
roles. The assigned robots should be chosen among those
available in the environment. The system should avoid
failures due to low battery level by assigning only robots 360

with sufficient battery level. The system should select
only robots that have the required capabilities to accom-
plish the mission. If more than one robot is capable of
fulfilling a role in a mission, the system should assign the
one that can execute its part in less time. While evaluating 365

the required capabilities, required level of the battery, and
time to execute a mission, the system may be required to
consult external systems (e.g., a system that contains the
map of the environment, with updated information about
the available corridors). 370

4.2. The Architecture
From the architecture design perspective of Mission-

Control, we should make sure it addresses important ar-
chitecture attributes that the system was designed for,
following Bass et al. principles for software architecture 375

design [17]. In particular, modifiability (i.e. ability of
the architecture to be modified to suit a new application)
and integrability (i.e. ability of the architecture to inte-
grate with existing systems) are key attributes at stake in
MissionControl. Modifiability and integrability are key 380

attributes to allow a complete architecture to be reused
between applications, as to fit in another environment,
the architecture needs to be modified to suit the new ap-
plication, and integrate with existing systems in that envi-
ronment. However, designing a system for such attributes 385

can be tricky as one may not foresee clearly the required
changes. A design strategy for those attributes is to iden-
tify a class of change requests that are likely to occur (i.e.,
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the system should be extended for a new kind of mission),
and design into the system a clear path for that change by390

using appropriate architectural tactics [17]. Modifiability
tactics aim at controlling the complexity of making com-
ponent changes by increasing their cohesion and reducing
their coupling and deferring their binding. Instead, inte-
grability tactics aim at reducing impacts to components395

whenever added, integrated into sets or reintegrated once
changed.

Key Architectural Quality Attributes. In Mission-
Control integrability and modifiability are prior-
itized so that new or existing missions and its con-
stituent parts may be seamlessly composed as well
as reused across mission applications. In the rest
of this section, we enumerate the design decisions
(DD) taken to support such quality attributes in
these highlighted boxes .

Figure 3 offers an overview of MissionControl. The
architecture provides a runtime environment and a com-400

ponent model.
The runtime environment encompasses the processes

for coordinating the mission, while the component model
provides extension points, allowing MissionControl to be
tailor-made to the application, environment, and robots405

for which the system will be deployed. The application
components are Skill Descriptors, Skill Implementations, and
Environment Description. They are integrated into the sys-
tem by the System Integrator. The Environment Descriptors
provides the data required by skill descriptors/implemen-410

tations that are specific to the end application environment
(e.g., a map describing routes that the robots can take).
Through the Environment Descriptors interface, Mission-
Control abstracts the consultation of information neces-

sary for the coordination process, reducing the difficulty 415

of integration in different environments. The Skill De-
scriptors provide estimates of the cost/utility of executing
a task with a given robot, while the Skill Implementations
are components that provide the control required to per-
form tasks by a robot. The contribution to modifiability of 420

the Skill Implementations and Skill Descriptor is twofold.
On the one hand, they facilitate the extension of the system
to new skills. On the other hand, they isolate modifica-
tions related to specific behaviors to the components that
provide that behavior. 425

MissionControl distributes responsibilities between the
coordinator and the robot. We consider that in a ser-
vice robots system it is convenient to delegate functions
to a central component, deployed in a server, connected
to power, and with a more stable wired network. Such 430

central component tends to have a longer uptime, greater
computational power, and is easier to upgrade (compared
to upgrading multiple robots). The central node aggre-
gates information from the environment and chooses the
best robot to execute parts of the plan. In its distributed 435

control, MissionControl gives autonomy to the robots in
the execution of the mission. In this way, the robot re-
ceives the plan at a high level of abstraction (in terms
of tasks), is responsible for making the local control of
the execution of its plan, and also responds to the coor- 440

dinator at a high level of abstraction (in terms of plan
progress). The advantages to give autonomy to robots are
twofold: (i) heterogeneity is simpler, as the coordinator
treats the different robots with a uniform interface, and
(ii) less communication traffic compared to a fully cen- 445

tralized approach, as the robot only reports the mission
status from time to time and does not need to coordinate
frequent decision making.
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(DD.1) Centralized vs distributed control. In Mis-
sionControl we chose a hybrid between centralized
and distributed control, distributing responsibili-
ties between a central node (Coordinator), and dis-
tributed components (Robots).

Runtime activities are encapsulated in MissionControl450

as two high-level entities, namely, the coordinator and the
robot. The coordinator receives missions from users in the
form of requests, stores them in its Knowledge Base, and
assigns local missions plans to robots. The main content
of the request is the Global Mission Plan, which is the455

decomposition of the mission into elementary tasks and
is formalized as an iHTN (see Section 3.2). Core to this
assignment, there is the coalition formation process, which is
responsible for selecting robots to participate in each mis-
sion. Such process is supported by the Estimating Man-460

ager, a subsystem used for estimating the cost and utility
of assigning a specific local mission to a given robot. The
Estimating Manager is further extended by two appli-
cation components, i.e. skill descriptors and environment
descriptors. The binding between coordinator and robots465

is dynamically executed, following the Ensemble-Based
Component System approach. Deferring binding to run-
time is a well-known tactic for modifiability [17]. Here it
is employed to allow changes to the set of available robots
transparently.470

A robot performs its local mission by executing the
tasks within its local plan and synchronizing with other
robots. The local mission is a tree structure where the
leaves are either elementary tasks or synchronizations (as
previously explained in Section 3.2). The sequencing pro-475

cess first chooses the skill implementation from the library
of skills for each task and, then, activates it. Finally, the ac-
tive skill controls the hardware of the robot and low-level
controlling processes while returning the progress for the
execution process that writes it in the robot knowledge480

base. We further explain the Task Execution process of
MissionControl in Section 4.5. Skills favor modifiability
by allowing the extension of a given deploy of Mission-
Control by adding the associated skill implementation
and descriptions, without requiring further modification485

of other parts of the system.
The coordinator and robot synchronize though knowl-

edge exchanges. Figure 3 shows two knowledge exchange
in MissionControl: (i) the robots update the coordinator
with their ‘properties’ (e.g., skills, position, battery level,490

battery discharge rate, etc.); (ii) the coordinator updates
the robots with a local mission.

The main concepts underlying our architecture are
mission, task, and skill. Missions express high-level ab-
stract goals of what needs to be achieved (e.g., fetch a lab495

sample for a nurse in room 3) and decompose them in ele-
mentary executable tasks. Missions in MissionControl are
a tree that refines high-level Abstract Tasks into concrete El-
ementary Tasks ones. Skills represent the abilities of a robot

to realize a task and abstract away the details about how a 500

robot can perform the task. Elementary tasks in a mission
are realized by applying appropriate skills (e.g., the task
‘navigate to room 3’ renders achievable by applying the
skill ‘navigation’).

Up to this point, we provided an overview of the main 505

components and abstractions and how they interplay to
realize MR missions.

4.3. MissionControl Ensembles
As anticipated before, our model for coordination of

the mission builds on top of the concept of ensembles- 510

based systems [10]. Ensembles provide the abstractions
for simplifying the (i) dynamic binding between the coor-
dinator and available robots, and (ii) implementation of
the coordination process, separating the decision-making
processes and the communication between the compo- 515

nents. In MissionControl, the Mission Coordination en-
semble has a coordinator and a dynamic set of robots as
components.

Listing 1 presents an excerpt of the constructs for those
components into the DEEco DSL [10] specification. The 520

Coordinator is sketched in lines 4-15 with its Coalition For-
mation Process (line 10). Following the ensemble paradigm,
processes operate on the knowledge base of the ensemble
component, i.e., they have fields in the knowledge base as
input and output. The Robot is outlined on the lines 20-40, 525

it features the Worker role and the sequencing process. The
sequencing process sequentially iterates over tasks in the lo-
cal mission plan activating the related skill, and monitor-
ing the progress until the task is concluded (more details
about the sequencing process and related subsystems are 530

presented in the Section 4.5).
The ensemble specification is presented in Listing 1

(lines 42-56). The role of the ensemble specification is
threefold: to define (i) the roles of the member and co-
ordinator, (ii) the membership condition, and (iii) knowl- 535

edge exchange mappings to occur between coordinator
and members. In our model, the coordinator of the en-
semble is the Mission Coordinator and Robots are the
members of the ensemble (i.e., Robots are the components
that have the Worker role). 540

The membership condition (line 46) is evaluated against
a pair of coordinator-member and if evaluated to True,
then the members (i.e., robots) can join the ensemble. The
robot members selected by the membership function will
be candidates for executing the missions received by the 545

coordinator. The ideal membership function can be sub-
ject to organizational policies, e.g., a hospital could sep-
arate robots working of a given section of the hospital
to minimize the chance of spreading infectious diseases.
For the scope of this paper, we consider a simple pol- 550

icy: the coordinator is initialized with a set of skills of
interest that are expected to appear in the requested mis-
sions. Any robot that has at least one skill in that set is
to be a member of the Mission Coordination ensemble.
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In the ‘lab samples logistics’, the coordinator is initial-555

ized with required_skills as ‘operate_drawer‘, and robots
capable of operating a drawer are the ones that are the
members of the ensemble that are responsible for execut-
ing the missions. Consequently, they are the candidates
in the allocation process.560

Knowledge exchanges between the coordinator and
robots are carried out through knowledge mappings. In
MissionControl, we use knowledge exchanges for (i) reg-
istering the properties about the robot in the knowledge
base of the coordinator (line 51), and (ii) distributing the565

‘local mission’ for the robots (line 55).
In MissionControl, we opted for an ensemble-based

system architecture instead of a layered architecture ap-
proach, as for instance in [7]. While in a layered model
communication can occur only between adjacent layers,570

an ensemble-based approach allows the communication
between components that form an ensemble. As such,
the coordinator and the robots form ensembles, i.e. dy-
namic groups to achieve missions, in which the coordi-
nator component is the coordinator of the ensemble, and575

the robots are members of the ensemble. The ensemble
defines knowledge exchange mappings, i.e. communica-
tions that occur between components.

(DD.2) Architectural Pattern. MissionControl is an
ensemble-based system architecture where the
components are bound together at runtime by
forming an ensemble for coordinating missions
and have processes that operate on the local knowl-
edge base.

4.4. Mission Coordination580

Mission Coordination involves receiving requests from
users, forming a coalition, and distributing plans. Figure 4
shows the Mission Coordination integrated with Task Exe-
cution. The lanes represent the user, the coordinator, and
the robots. The responsibility of the coordination is di-585

vided into two phases: (i) the Mission Initialization, with
the communications and processes that happen when a
request from the user is received, and (ii) the Coalition
Formation, which is executed when a role in the mission
needs to be assigned.590

4.4.1. Mission Coordination Runtime Environment
The mission initialization is triggered when a User

sends a request with a Global Mission plan to the coor-
dinator. The coordinator instantiates a mission context.
Then, the plan is divided into local missions (using the di-595

vide algorithm from Lesire et al. [8]) and the local missions
associated with managed roles are set into the mission
context. Finally, the coordinator adds the mission context
into the set of missions in its knowledge base. The local
missions within the mission context do not initially have600

Listing 1: DSL excerpt from ensemble specification

1 ro le MissionsCoordinator :
2 missions , act ive_workers , r e q u i r e d _ s k i l l s
3

4 component Coordinator f e a t u r e s MissionsCoordinator
5 knowledge
6 missions = [ ]
7 act ive_workers = [ ]
8 r e q u i r e d _ s k i l l s = [ ]
9

10 process c o a l i t i o n _ f o r m a t i o n
11 inout missions
12 inout act ive_workers
13 function :
14 . . .
15 scheduling : periodic ( 100ms )
16

17 ro le Worker :
18 s k i l l s , loca l_miss ion , l o c a t i o n , b a t t e r y _ l e v e l ,

battery_consumption_rate , avg_speed
19

20 component Robot f e a t u r e s Worker
21 knowledge :
22 s k i l l s = [ ]
23 l o c a l _ m i s s i o n = . . .
24 l o c a t i o n = . . .
25 b a t t e r y _ l e v e l = . . .
26 battery_consumption_rate = . . .
27 avg_speed = . . .
28 t a s k _ s t a t u s = . . .
29

30 process p r o p e r t i e s _ s e n s i n g
31 inout l o c a t i o n , b a t t e r y _ l e v e l
32 function :
33 . . .
34 scheduling : periodic ( 1000 ms )
35 process sequencing
36 in l o c a l _ m i s s i o n
37 inout t a s k _ s t a t u s
38 function :
39 . . .
40 scheduling : periodic ( 100ms )
41

42 ensemble MissionsCoordination :
43 coordinator : MissionsCoordinator
44 member : Worker
45

46 membership :
47 coordinator . r e q u i r e d _ s k i l l s ∩ member . s k i l l s

, ∅
48

49 knowledge exchange :
50 # member to coordinator
51 coordinator . workers ← member
52 mission_assigned =

mission_member_is_assigned ( coordinator ,
member )

53 update_mission_progress ( mission_assigned ,
member . l o c a l _ m i s s i o n )

54 # coordinator to member
55 member . l o c a l _ m i s s i o n ←

get_member_local_mission ( coordinator ,
member )

56 scheduling : periodic ( 100ms )

8
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an assigned robot, and, therefore, the mission context has
initially pending assignments.

Mission planning, also called task decomposition pro-
cess, is the activity that generates a plan suitable for the
known state of the world. This plan says (i) what has to605

be accomplished in terms of what tasks should be per-
formed, (ii) which are the dependencies between them,
and (iii) what values should be assigned to parameters.
We decided to provide a service interface that receives re-
quests with global mission plans from an external mission610

planner. This allows independence from task decomposi-
tion and mission coordination.

(DD.3) Task Decomposition. For integrability pur-
poses, MissionControl provides a service inter-
face to integrate with an external mission plan-
ner. Moreover, it favors modifiability by decou-
pling responsibilities between task decomposition
and mission coordination.

Estimating Manager. The estimate manager provides es-
timations for the coalition formation process (‘Estimate615

Tasks’ in the Coordinator lane in Figure 4).
The Estimating Manager provides the method esti-

mate that receives a candidate worker and a list of tasks
and returns a Bid. A Bid has three attributes: worker,
the candidate robot, partials, estimates for each task in620

task_list, and estimate, the aggregation of the estimates of
all tasks in task_list. The property estimate of the execu-
tion of tasks (e.g., time and battery charge required) is
calculated by applying the Skill Descriptor estimate func-
tion to the context of task execution. To do so, the task625

estimate

SkillDescriptorRegister

+ map: Map <type, SkillDescriptor>

+ get(type: str): SkillDescriptor
+ register(type: str, descriptor: SkillDescritpor)

EstimateManager

+ estimate(worker: Worker, 
  task_list: []): Estimate

skills_register indoor_navigation

NavigationSD

+ estimate(task_context)
   : Estimate

Figure 5: Estimate Manager

execution context comprises task parameters (e.g., desti-
nation position), information about the robot (e.g., robot’s
origin position), and information about the environment
(e.g., length of the shortest route between the origin and
destination). 630

The Skill Descriptor Register keeps the instances of
Skill Descriptors and is responsible for finding the appro-
priate Skill Descriptor for each task. Figure 5 shows the
Estimating Manager the Skill Descriptor Registers and an
exemplar of skill descriptor. 635

Coalition Formation Process. - The coalition is formed by
selecting a subset of robots to execute roles in a mission.
More specifically, the coalition formation process for each
mission with pending assignments takes the set of cur-
rently not assigned workers and executes Algorithm 1. 640

In this work, we focus on missions that have been spec-
ified for instant allocation, where an external process (e.g.,
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Algorithm 1 Coalition Formation Process

Require: mission with pending local missions and
workers a list of currently available robots

1: function create coalition(mission, workers)
2: plan_rank_map← {}
3: pending_local_mission← pending(mission)
4: for local_mission in pending_local_mission do
5: viable_bids← []
6: task_list← flat_plan(local_mission.plan)
7: candidates←get_compatible_workers(task_list,

workers)
8: for worker in candidates do
9: bid← estimate(worker, task_list)

10: is_viable← check_viable(bid)
11: if is_viable then
12: viable_bids.insert(bid)
13: end if
14: end for
15: if viable_bids = ∅ then
16: return false
17: else
18: ranked_bids← rank(viable_bids)
19: plan_rank_map[loca_mission]← ranked_bids
20: end if
21: end for
22: selected_bids← select_bids(plan_rank_map)
23: set_assignments(pending_local_mission, selected_bids)
24: return true
25: end function

a human user) requests a task in an uncertain timeline that
may involve multiple robots (known in the literature as
Single Task, Multi -Robot [36]). Then, the system assigns645

a set of robots among the available ones to execute the
mission. We chose to realize coalition formation and task
allocation simultaneously, i.e. we selected the robots to
form the coalition based on the expected qualities of the
execution of the tasks at hand by the selected robots. This650

is based on the premise that we will have quality informa-
tion about the environment when we receive the mission
request to choose a near-optimal set of robots to carry out
the mission. There are classes of missions for which in-
stant allocation is not optimal, i.e., when we have a set of655

rooms to be cleaned and we need to distribute these rooms
among robot teams (Multi-Task, Multi-Robot model). We
do not cover missions beyond instant allocation in this
paper.

(DD.4) Coalition Formation / Task Allocation. Coali-
tion formation and task allocation are realized
simultaneously and delegated to a well-defined
module within the architecture. Future variants
could be integrated to improve performance, or
to support missions with other allocation require-
ments.

660

In a nutshell, Algorithm 1 is auction-based: for each
not assigned local mission, the coordinator creates a set of
bids with a bid for each known available worker. The bid
is viable if the related worker has all the required skills
and sufficient resources (e.g., battery charge). Then bids 665

are ranked, and finally, the best-ranked bid is selected.
Algorithm 1 receives as input a mission context and the

set of available workers. The fields in each worker object
are the same as the Worker role of the robot ensemble com-
ponent, as shown in Listing 1. First, the pending function 670

gets local missions with pending assignments. Local mis-
sions are in a pending state if they are not concluded nor
have an assigned worker . For each pending local_mission,
the function searches for an assignment as follows (lines 4-
21). First, task_list receives a flat version of the local mis- 675

sion, i.e., a list of the elementary tasks contained in the
local mission (lines 6. Next, the set of compatible workers
is assigned to candidates and 7). Compatible workers are
the ones that have all skills required to perform the local
mission, i.e., have a skill for each task in task_list. Then, 680

for each candidate worker, we estimate the cost/utility of
the allocation (line 9). The estimate function is a call for
the estimate manager, which is a subsystem that supports
the coalition formation process and is extended by the en-
vironment and skill descriptors. The estimate function 685

returns a bid. After creating estimates for the assignment,
we check if it is viable (line 10), i.e., if it satisfies restric-
tions, such as, if the robot has enough battery to perform
all tasks in task_list. If restrictions are satisfied, the bid is
inserted in viable_bids (lines 11-13). Then, if no viable bid 690

was obtained for any of the local missions with pending
assignments, the algorithm returns f alse (lines 15-17). In
that case, any robot will be allocated, even for other local
missions within the mission that has viable allocations.
That was a design choice, as we opted for not allocat- 695

ing robots to missions if part of the mission cannot be
executed. Otherwise, if viable_bids is not empty, the vi-
able bids are ranked (line 18) and the rank is put on a
map that relates local missions that are not assigned with
the list of ranked bids (lines 19). Finally, the best-ranked 700

bids for each local mission are selected and an assignment
is realized for each local mission in pending_local_mission
(lines 22-24).

4.4.2. Mission Coordination: Component Model
The previous section described the Mission Coordina- 705

tion Runtime Environment of MissionControl. It provides
a domain-independent model for the coordination of the
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tation examples

missions. The components described in this section ex-
tend the runtime environment for the specific missions
and related tasks.710

Global Mission Plan. The global mission plan is received in
requests from users. It is a tree that refines abstract tasks
into elementary executable tasks. The elementary tasks
have types that are unique identification labels within
a domain (e.g., navigate, approach person, authenticate715

person, and operate drawer). For a received request to
be valid, its contained plan should have elementary tasks
types within the set of supported task types, i.e., the task
types for which the system has equivalent skills descrip-
tors and implementations.720

The Global Mission Plan is expected to be generated
with the help of an HTN planner (e.g., Shop2 [33]). We ex-
tended iHTN [8] by allowing tasks to be assigned to roles
rather than specific agents. Mission roles are either man-
aged or non-managed. Non-managed roles are agents725

that the system has no control over, i.e., it cannot send
plans for them to execute. In the lab samples (Fig. 1), the
nurse is a non-managed role, while ‘r1’ is a managed one.
Also, managed roles must be assigned by the coordinator.

While the Global Mission Plan specifies what must730

be performed, the Skill and Environment Descriptors are
used to extend the system with the capability of estimating
the viability and cost of executing the tasks in the plan by
a given robot.

Skills Descriptors. Components that provide estimates of735

properties of the execution of a task by a given robot
in a specific task context. The skill descriptor interface
contains a method estimates that receives the task context
and returns estimates for that task. The skill descriptor
can have as dependencies Environment Description that740

supports the estimation process by providing information
about the environment. Dependencies between skill de-
scriptors and environment descriptors are resolved by the
runtime environment.

Environment Descriptors. These components encapsulate 745

the information about the environment required by Skill
Descriptors. The interface of the environment descriptor
is an empty interface. This is because the information
required by the skill descriptors is domain-specific. Fig-
ure 6 presents an example of Environment Descriptor and 750

Skill Descriptor. The RoutesED is an environment de-
scriptor that is instantiated with the environment map
and resolves queries about routes between two points.
The NavigationSD is a skill descriptor that uses the routes
descriptor to realize estimates of navigation tasks. 755

(DD.5) Coordination Extension Points. To favor
reuse of MissionControl in different environments
and across different missions, we define points of
extension where the estimates can be extended and
suited for the end-application mission and envi-
ronment. The extension points allow the System
Integrator to add new components, without hav-
ing to change significant parts of the system. The
coordinator extension points are: skill descriptors
and environment descriptors.

4.5. Task Execution
The coalition formation process, described in the last

section, assigns local plans to robots. Then, in the execu-
tion phase, the local plans are carried out by the robots. 760

Task Execution is represented in the rightmost lane in Fig-
ure 4.

The robot executes its tasks by selecting the next task
from its local plan and activating an appropriate skill
implementation. Skill implementations encapsulate the 765

different behaviors that the robot can apply to execute
tasks, while the runtime environment is concerned with
the life cycle of these behaviors. The Task Execution as-
sumes that the Local Mission is present in the knowledge
base of the robot. Then, the Sequencing process is re- 770

sponsible for resolving from the local mission what is the
next task that should be executed. When a new task is
selected, the Sequencing process looks for a compatible
skill implementation for that task into the library of skill
implementations and activates it. Synchronizations (i.e., 775

Send Message/ Wait Message) are built-in skills imple-
mentations, while other skills must be integrated into the
system. Task Execution in MissionControl is based on
concepts from Behavior Trees (BT). In traditional BT ap-
plications, the overall behavior of an agent is specified in 780

a single BT.

4.5.1. Task Execution: Runtime Environment
In relation to task execution, the MissionControl run-

time environment encompasses sequencing and manage-
ment of the life cycle of the active skill. This runtime 785

environment is extended by the library of skill implemen-
tations, that the low-level control for each skill that the
robot supports.
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Sequencing. The sequencing process is performed period-
ically and it is responsible for (i) selecting the next task that790

must be executed from the current local plan, (ii) loading
the skill for the selected task, and (iii) ticking (i.e., pass-
ing the control to) the active skill until the task reaches an
end. Ticking is a concept of behavior trees in which the
control is passed to the root node of the tree and according795

to conditions in the BT, the control is switched between
sub-trees [12].

Algorithm 2 Sequencing Process

Require:
1: local_mission: manages local plan, provides the tasks

into the correct order
2: active_skill_ctrl: manages the life-cycle of the skills
3: task_status: interface with the knowledge base
4:
5: function sequencing(local_mission, active_skill_ctrl,

task_status)
6: if local_mission.has_no_plan( )then
7: return
8: end if
9: if active_skill_ctrl.is_idle( )then

10: next_task← local_mission.next_task()
11: skill_impl← skill_library.query(next_task)
12: active_skill_ctrl.load(skill_impl)
13: task_status.set_value(status)
14: end if
15: tick_status← active_skill_ctrl.tick()
16: local_mission.update(tick_status)
17: ts← local_mission.get_task_status()
18: task_status.set_value(ts)
19: end function

Each execution of the process (Algorithm 2) goes as
follows. If there is no active plan it does nothing (line 6).
If there is no active task, obtain the next task (line 10) that800

must be performed according to the local plan and load
the equivalent skill from the skill library (line 12). When
there is a task in progress, or right after loading a new skill,
tick the BT of the active task, obtain the result (line 15),
update the local mission (line 16), and set the status of the805

task in the knowledge base (line 18).

Active Skill. While a skill is active, i.e., during the execu-
tion of a task, the active skill receives ticks. In these ticks,
the active skill can interface with low-level processes to
control the behavior of the robot. This goes on until the810

BT reaches a final state of success or failure.
In each tick, the runtime environment traverses the

active skill’s in the BT checking conditions, and possibly
starting actions. The result of the BT tick can be: (i) In
progress, when the task is being performed; (ii) Success815

end, when the task was completed, and, finally, (iii) Fatal
failure, when the task cannot be completed.

4.5.2. Task Execution: Component Model
Skills Implementations. The skill implementation encapsu-
lates the complexity related to executing a specific type of 820

task, providing a uniform interface for mission coordina-
tion. Skill Implementations are deployed to a ‘library of
skills’, and are associated with a task type. At the mis-
sion level, a task might be seen as not started, in progress,
completed, and in failure. The complexity of monitoring 825

the environment and diagnosing the presence and type of
failure must be implemented as part of the skill.

The skill-based design facilitates the system design
process, breaking the robots’ behaviors into different skills.
Yet, in an uncertain environment, each single skill can be 830

complex, as it may need to apply different behaviors in
order to handle different emerging situations. For exam-
ple, the ability to navigate may not only navigate from
one room to another on the same floor, one may also have
to take an elevator or ask a person for permission to pass. 835

To perform these different behaviors, skill providers may
have to make use of several low-level sensors, actuators,
and processes. For allowing better management of behav-
iors at the skill levels, we integrated BTs at task execution.
In our approach each skill implementation has a BT that is 840

loaded when the skill is activated. Then, during the task
execution, the system periodically ticks the BT and evalu-
ates the progress of the task. Actions in the BT can control
lower-level processes in the robot. BTs promote the com-
position of reusable behaviors, which can be useful in a 845

skill-based design as it allows parts of skills to be reused
between skills (e.g., parts of a skill for approaching and
for following a person can be reused, such as, parts re-
lated to locating and determining the position of a person
in relation to the robot). 850

(DD.6) Skill-based system. To favor reuse of Mis-
sionControl in different missions and with a het-
erogeneous set of robots we followed a skill-based
design to implement the robot behaviors.

5. Implementation

To evaluate MissionControl, we implemented a proto-
type realizing the architecture in Python (version 3.8). We
implemented the core data model, processes, and the es- 855

timate manager in pure Python, without dependencies in
specific ensemble frameworks. Then, we implemented
a version of the DEEco component model for Python,
highly based on an existing implementation named Py-
DEEco [37]3 and implemented an integration layer be- 860

tween MissionControl and the DEEco component model.
We created an integration layer to keep a separation be-
tween the ensembles implementation and the core of Mis-
sionControl. This separation was done to increase testa-

3https://github.com/d3scomp/PyDEECo
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bility and to facilitate creating future ports on top of other865

ensemble providers.
Figure 7 shows the main modules of the implemen-

tation of MissionControl as a concrete framework and
the dependencies between the modules. The application
package represents any end application using the Mission-870

Control. The MissionControl implemented framework
has five modules: data_model, coordination, estimating, exe-
cution and deeco_integration. The data model contains the
types and basic algorithms for processing missions, and
therefore, is a dependency for all other modules. The es-875

timating module has the implementation of the estimate
manager, and the interfaces for the Skill Descriptor and
Environment Descriptors. The coordination module con-
tains the coalition formation process and the data struc-
tures to support it. While execution module contains the880

sequence process, the skill library, interface required for a
skill implementations, and supporting types. Finally, the
deeco_integration module is where the Coordinator and
the Robot components as well as the Mission Coordina-
tion Ensemble definition are implemented (as discussed in885

Section 4.3). We introduced the deeco_integration mod-
ule to create a separation between the data model and
algorithms and deeco, which increases the testability and
modifiability of the modules.

A DEEco component model implementation, such as890

PyDEEco, provides ensemble abstractions, such as ensem-
ble formation, knowledge exchange, and function schedul-
ing. PyDEEco also provides an internal simulator that
was handy during the development as it allowed us to ex-
ecute an ensemble-based system as a local single process895

application. This simulation functionality allowed us to
create integration tests with standard test libraries, with-
out any special environment setup. However, pyDEEco
lacked some core features of the DEEco component model,
that our architecture required, so we forked the pyDEEco900

into the MissionControl repository and implemented the
missing features (it is represented by the deeco module in
Figure 7).

The application module implements the main func-
tion and instantiates and wires the components together. 905

The instantiation of the architecture can have complex
dependencies graphs as, for example, the coalition forma-
tion process depends on an instance of the estimate man-
ager, which in turn depends on different skills descriptors,
which, in turn, depends on environment descriptors. To 910

ease the process of wiring the components together we
used a Dependency Injection (DI) [38] container, which
automatically instantiates dependencies and wires them
together. The robot version of the application, uses py-
trees4, and ROS [39] for implementing the active skill. 915

ROS provides middleware and inter-process communica-
tion functionalities, while py-trees is a Python Implemen-
tation of behavior trees.

(DD.7) Make the implementation independent of spe-
cific frameworks and middleware whenever possible. -
We decided to implemented the data model and
main algorithms as standalone code, and created
specific modules that provides bindings for ROS
and DEEco. This favors modifiability and inte-
grability by making MissionControl independent
from ROS and DEEco frameworks.

To evaluate the architecture we implemented some ap- 920

plication components. These components are not part of
the MissionControl Runtime Environment but are an ex-
ample of components extending it. The indoor_navigation
package has three components: Routes Environment De-
scriptor , Navigation Skill Descriptor , and the Navigation 925

4http://wiki.ros.org/py_trees_ros
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Skill Implementation . The routes environment descriptor
is based on a topological map [40], which uses a graph of
points-of-interest (POIs, e.g., ‘laboratory’, ‘intensive care
1’) and linear segments between these points. A graph
search algorithm is used for generating a route between930

two locations. The resulting route has a total distance (in
meters) and a list of waypoints (intermediate points in the
path used to orientate the navigation). The routes envi-
ronment descriptors are instantiated with a graph specific
to the building. The navigation skill descriptor depends935

on the route environment descriptor. The total length of
the route is used to estimate the time required to reach a
destination from the origin point (i.e., the position of the
robot before the navigation task).

The Navigation Skill receives a route already planned940

and should follow the list of waypoints to get to the des-
tination. We implemented the control of following the
list of waypoints in the BT of the skill, while the naviga-
tion between two adjacent points in the list of waypoints
and obstacle avoidance is provided by the move-base ROS945

node5.

6. Evaluation

The evaluation of MissionControl has two goals. First,
as shown in Section 6.1, through a controlled experi-
ment [41, 42] we aim to collect evidence that our archi-950

tecture promotes effective mission coordination of het-
erogeneous robots. Second, as shown in Section 6.2, we
evaluate the modifiability and integrability of the archi-
tecture.

6.1. Evaluation Goal 1955

We structured the definition of the objectives follow-
ing the Goal-Question-Metric (GQM) paradigm [43]. Such
standard assisted us in deriving metrics for evaluating
the feasibility and efficiency of MissionControl against
a baseline approach. The derivation process is held by960

formulating questions that concretely explore the reason-
ing behind the evaluation. To that extent, evaluating the
MissionControl consists of collecting and computing the
derived metrics. According to the GQM paradigm, we
describe the overall goal of the evaluation and the met-965

rics.
Goal 1: Evaluate whether MissionControl promotes effec-
tive mission coordination of cooperative heterogeneous
robots.

• Question 1) How reliable is MissionControl in form-970

ing coalitions of heterogeneous robots for conclud-
ing missions compared to the baseline?

• Question 2) How time-efficient are teams of hetero-
geneous robots in MissionControl compared to the
baseline?975

5http://wiki.ros.org/move_base

• Question 3) How effective is MissionControl in pre-
venting failures from lack of battery compared with
the baseline?

To answer questions from 1 to 3, we set up an experi-
ment that consists of running a series of trials on randomly 980

generated scenarios. To allow comparison, we executed
each scenario with two treatments: MissionControl and
a baseline approach. As far as we are concerned, there
are no other applicable approaches to serve as a baseline
for this evaluation. Therefore, we used as the baseline, 985

an algorithm that randomly assigns robots to roles on the
mission plan.

Metrics. For each trial run we collected two direct mea-
sures: (i) the end-state of the trial run, and (ii) the time-to-
conclude (TTC) of trial runs which ended in success. The 990

end-state can be either a success or failure and in the case
of failure we collect also the cause of failure. And the TTC
is a measure of time that the team of assigned robots took
to conclude the mission successfully.

These measures constitute a sample of the expected be- 995

havior of the system, for which we can perform statistical
hypothesis tests for answering the questions. By the end
of our controlled experiment, we want to assess whether
MissionControl will fulfill the following expectations:

1. A higher success rate than the baseline. 1000

2. A lower mean time-to-conclude than the baseline.
3. A lower mean rate of failures due to a low battery

than the baseline.

6.1.1. The Experimentation Scenarios
To assess such expectations, we perform a t-test com- 1005

paring the sample of trials coordinated with MissionCon-
trol with the ones with baseline, a metric of the confidence
of the supporting of t-test to the hypothesis. We should
note that we adopted a standard 0.95 level of confidence
as a reference throughout the controlled experiment. 1010

We evaluate our approach on the mission specification
for the Lab Sample logistics described in Section 3, where
the system has to pick up the sample from a nurse and
deliver it to the laboratory. Moreover, the experiment is
performed in a simulated environment by executing a set 1015

of trials, where each trial is defined by a scenario and a
mission plan. A scenario consists of an initial position
for a nurse requesting a sample delivery and an initial
configuration of each robot. The mission plan is generated
according to the scenario by either MissionControl or the 1020

baseline algorithm. The simulated world, the robots and
the nurse are further described as follows:
Simulated World. The simulation environment is an in-
door hospital layout with 15 rooms and a separate labora-
tory area. The environment has 36.3 meters by 34.8 meters 1025

(LxW). Figure 8 shows a higher-level view of the environ-
ment and the topological map, where small circles and a
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label mark the entrance of areas of the hospital. The labo-
ratory is labeled LAB, while the others represent patient’s
rooms.1030

Robots and Nurse. The simulated world is populated
with a nurse, 6 initial mobile robots, and a static robotic
arm, located in the lab, that can fetch samples from the
mobile robots. The scenarios are created by choosing the
initial position of the nurse, and the initial configurations1035

of the available robots. Each robot in the scenario has four
initial settings: (i) set of skills, (ii) initial location (i.e., the
entrance of one of the 15 rooms), (iii) initial battery level,
and (iv) battery consumption rate. During the trials the
robots have an average speed of 0.13 m/s.1040

The scenario is defined by a set of controlled variables
defining the initial configurations of the set of robots and
the nurse. To generate the set of scenarios for the experi-
ment, we randomly generate sets of alternative values for
each of the scenario‘s initial configurations (i.e., positions1045

of each agent, robots and nurse, and configurations of
robots), and combine them. For each initial configuration
of the scenario, we generate three random sets of values,
then generate a total combination of the sets, totaling 81
(34) unique scenarios. All other factors related to the sim-1050

ulated robots, simulated humans, and the map were kept
constant across the scenarios.

The robots are assigned to tasks according to a mission
plan, that is generated by the treatment which is the object
of evaluation in the experiment. The treatment is either1055

MissionControl, which executes as described in Sections 4
and 5, and a baseline algorithm, that randomly assigns
robots to roles in the mission specification.

As outputs of the trial run, we collect the end-state of
the trial, and the time-to-conclude (TTC) in case of the end-1060

state being a success. These are the dependent variables
of the experiment The end-state of a trial can be either (i)
success, (ii) no-skill failure, (iii) low battery failure, (iv) timeout
sim failure, and (v) timeout wall failure. The success end-

state occurs when the lab sample reaches its destination 1065

before a failure occurs. The no-skill failure occurs when a
robot tries to execute a task for which it does not have a
proper capability. The low battery failure occurs when the
assigned movable reaches a battery level below 5%. The
timeout sim failure occurs when after the simulation reaches 1070

15 min in the simulated clock, without prior reaching an
end-state. And finally, a timeout wall failure occurs when
the experiment executor machine marks 45 minutes of
wall-clock (i.e., real-world time, not within the simulation)
executing the same trial, without reaching an end-state, 1075

which normally indicates a failure in the simulation setup.
The TTC is measured only for success-ended trials, and
it is the difference between the timestamp of request and
when the lab sample reaches its destination.

6.1.2. The Simulation Infrastructure 1080

Conducting an experiment to assess the coordination
of heterogeneous robots and an environment of uncer-
tainty is not a trivial task, as we need to create a signif-
icant diversity of scenarios, configure the environment
suitably to represent the scenario, and run the trials in 1085

sufficient numbers for the results to have statistical signif-
icance. Therefore, to execute the experiments we created
a pipeline comprised of three phases: generation, exe-
cution, and analysis. Figure 9 illustrates the experiment
execution pipeline. 1090

The purpose of the experiment generation is to create
trials from the scenarios by assigning a plan to the robots.
We created two trials for each generated scenario, one
for the approach and one for the baseline. We generated
the approach plan by (i) instantiating the coordinator and 1095

components for each robot, according to the scenario, (ii)
triggering a request to the coordinator, according to the
position of the nurse defined in the scenario, (iii) wait-
ing for the system to form the ensemble and handle the
request, and finally (iv) parsing the plan assigned to the 1100

robots and writing it to the trial. The experiment genera-
tion process results in the Experiment Configuration file,
containing the parameters for the execution of each trial
(162 trials in total, 81 for each treatment).

The second phase of our experiment pipeline is the ex- 1105

periment execution, comprised of two major components:
the trial orchestrator and the trial environment. The Trial
Orchestrator creates an appropriate simulation environ-
ment for each trial, consisting of a simulator and a robot
runtime controller for each robot in the scenario. 1110

The Trial Environment is comprised of the simulation
container. Our simulation environment uses the Morse
simulator [44] instantiated with the map depicted in Fig-
ure 8. Also, as part of the simulation container, there is the
logger service that receives logging information from the 1115

other system sections and then stores the data into a file,
also logging the simulation time and the sender node. Ad-
ditionally, we extended the simulation environment with
instrumentation to collect the trial end-state and TTC. To
assess the success end-state and TTC, we implemented a 1120
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new entity inside the simulator, the Inventory, which is
instantiated at the final destination, and it registers the
entrance of lab samples as soon as they were delivered.
The Inventory receives the sample from the robot arm in
the lab, sends the event log data, and requests the simula-1125

tion end by sending a keyword to the logger service. Also,
we implemented a battery module that simulates the con-
sumption of battery and identifies low battery failures.
When the end of the simulation is signaled, or the simu-
lation exceeds the time limit, the Trial Watcher then shuts1130

down the simulation, stores the log content in a proper
file with the trial ID, and logs the execution’s wall-clock
time.

The execution phase is quite demanding from the com-
putational resource perspective as was executed in paral-1135

lel by 8 desktops Dell OptiPlex 3040 with Intel i5 6th gen,
8 GB of RAM, and took 28 hours to conclude. Each of the
8 machines executed the completed set of trials indepen-
dently, resulting in the 81 scenarios being run 8 times for
both MissionControl and the baseline approach. So, for1140

both treatments, there were 648 trial runs, 1296 executions
in total. The experiment repository6 has the implementa-
tion of the pipeline, as well as instructions for deploying
and executing.

Finally, in the analysis phase of our pipeline, we col-1145

lect the data in the form of log files for each trial, parsed

6https://github.com/lesunb/morse_simulation

it, and create a dataset to be manipulated by statistical
software. From this dataset, we plotted the graphs and
performed the hypothesis tests that are presented in Sec-
tion 6.1.3. The data obtained at runtime along with the 1150

Jupyter Notebooks [15] used during the analysis are avail-
able in a public repository [16].

6.1.3. Results
How reliable is MissionControl in forming coalitions of

heterogeneous robots for concluding missions compared to the 1155

baseline? To answer the first question, we compared the
number of successful trial runs of our approach with the
baseline treatment. In 648 executions, the mission co-
ordinated by the baseline had 354 successes, while Mis-
sionControl had 558, yielding an increase of 57.627 % in 1160

the rate of successes when compared to the baseline. To
check if the rate of success obtained by MissionControl
were statistically significantly higher than the ones from
the baseline, we performed a paired t-test [45] comparing
both treatments. More specifically the number of suc- 1165

cesses obtained by MissionControl and baseline in each
scenario were paired, and it was generated a set (D) with
the differences between the number of successes, for each
scenario (Di = SMC,i − SBL,i | i the index of the scenario).
The null hypothesis H0 is that the difference in the mean 1170

success rate is equal to zero (µD = 0), i.e., MissionControl
has the same mean success rate of the baseline, and the
alternative hypothesis H1 is that the mean difference is
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Figure 10: Trials results

higher than zero (µD > 0), i..e, the MissionControl has a
higher success rate than the baseline). The result of the1175

paired t-test was that H0 should be rejected in favor of H1,
with the confidence of (1 − α) = 0.9995, indicating a high
level of confidence that MissionControl leads to a higher
mean success rate than the baseline.

Figure 10 shows the distribution of the end states for1180

both MissionControl and baseline in each of the 81 gen-
erated scenarios. MissionControl has fewer failure states
in general. Particularly, trials treated with MissionCon-
trol did not present failures regarding the chosen robot
not having the necessary skills for the task (no-skill fail-1185

ure). This lack of no-skill failures is due to the coalition
formation process filtering robots that do not have the re-
quired skills before estimating the bids. We also got fewer
occurrences of failures due to a low-battery level for the
scenarios treated with the MissionControl. This decrease1190

of failures is due to the approach checking for resource
restrictions in the coalition formation process. Figure 11
summarizes the distribution of the number of successes
per scenario as a violin plot. We can observe that our
approach has a higher concentration on the higher num-1195

ber of successes per scenario as compared to the baseline.
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Figure 11: Violin plot with the number of successes per scenario.

In summary, the MissionControl was able to completely
avoid one class of failure (no-skill failure) while reducing
the occurrence of others (low-battery and timeout failure).
The findings support that a MissionControl-based system 1200

can form coalitions capable of executing missions, reduc-
ing the incidence of failures when compared with the base-
line approach. We provide a more in-depth discussion of
the observed failures in trials treated with MissionControl
at the end of this section. 1205
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How time-efficient are teams of heterogeneous robots in Mis-
sionControl compared to the baseline? To answer the sec-
ond question, we compared the average time inside the
simulation for the conclusion of the successful missions
between trials of the approach and the baseline. In 6481210

executions, TTCMissionControl was 268.495 s, while TTCBaseline
was 318.28 s yielding a decrease of 16.64 % on the average
time required to conclude missions.

To verify the statistical significance of the results we
performed a t-test (unpaired). The test was performed fol-1215

lowing a method for inference on the difference in means
of two distributions with unknown variance [45], taking
as samples the set of time-to-conclude for either of the
treatments (a total of 354 values for baseline, and 558 val-
ues for the MissionControl). The null hypothesis H0 is that1220

the difference in the mean TTC equals zero (µdi f f TTC = 0),
i.e., MissionControl have the same mean TTC as the base-
line, and as an alternative hypothesis H1, that the mean
difference is less than zero (µdi f f TTC < 0), i..e, the Mis-
sionControl has a lower mean time-to-conclude than the1225

baseline. We found with the confidence (1 − α) = 0.9995
that H0 should be rejected in favor of H1, concluding with
statistical significance that the mean of TTC is lower for
the MissionControl than it is for the baseline.

In Figure 12 we have a visualization of the distribution1230

of the time to conclude in seconds. We can see that our
MissionControl, in orange, has a higher concentration of
missions concluded with less time. It is noteworthy that
there is a concentration of trials which yields a TTC be-
tween 350 and 450 seconds. We investigated the data and1235

concluded that this concentration is related to influence
of the factors in the scenario, in special the initial location
of the agents. As previously explained, the 81 scenarios
were generated by a total combination of three levels of
four independent factors. One of such factor is the initial1240

location, which defines the room where the set of simula-
tion agents (i.e. nurse and robots) will be at the scenario
initialization. By grouping the TTC for trials with the
same initial position, we obtain three groups (a, b and c)
for the planned and baseline trials. Figure 13 shows a box1245

plot for TTC of the trials in each distance group. Groups
a and b have similar distance traversed by the robot, but
group a requires the robot to maneuver a sharper turn
than group b. While group c is the shortest distance sce-
nario. The set of scenarios in group a is responsible for the1250

TTC around 350 and 450 seconds. Figures for the other
factors are available in our analysis repository [16]. They
were generated from Jupyter Notebook scripts [15].

How effective is MissionControl in preventing failures from
lack of battery compared with the baseline? To answer the1255

third question, we compared the occurrences of failures
due to the battery reaching a critically low level. In 648
executions our approach had a total of 35 low-battery fail-
ure scenarios, whereas the baseline had 97 low-battery
failures, yielding a reduction of 63.92 % for the low bat-1260

tery occurrences compared to the baseline.
Then we checked if MissionControl was able to reduce

baseline planned
200
300
400
500
600
700
800

TT
C

Figure 12: Violin plot with time distribution (TTC in seconds)

a b c
Factors Location

200
300
400
500
600
700
800

TT
C

baseline
planned

Figure 13: TTC for trials grouped by initial location (in seconds)

the mean rate of failure due to low battery with statistical
significance. We performed a paired t-test pairing the
difference of the number of failures due to low-battery on 1265

each scenario (Di = BFMC,i−BFBL,i | i the index of scenario).
The null hypothesis H0 is that the difference in the mean
success rate is equal to zero (µD = 0), i.e., MissionControl
have the same mean failure rate of the baseline, and the
alternative hypothesis H1 is that the mean difference is 1270

smaller than zero (µD < 0), i..e, the MissionControl has
a lower mean rate of failures due to low battery than the
baseline. The result of the t-test is that H0 is to be rejected in
favor of H1 with confidence of (1 − α) = 0.95. Concluding
that in MissionControl reduces the mean rate of failures 1275

due to battery level when compared to the baseline.

Qualitative Analysis of Failures. The results for question1 in-
dicates an overall improvement of the rate of success of the
approach when compared to the baseline, corroborating
that checking for skills and resources before forming the 1280

coalition can avoid failures. However, we still observed
a not negligible rate of 13.89% of failures. The next step
was to further analyze the execution of the trials planned
by the approach to identify the cause of these failures and
the limitations of the MissionControl. The verification 1285

was twofold: first, we verified the logs generated by the
mission coordinator verifying if the coalition formation
processes were correctly executed; second, we analyzed
the logs generated by the robots assigned to tasks, and
inspect the logs generated in trails associated with fail- 1290
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Executed Success Failure
Mission Coordination (81 scenarios)

The ensemble was Formed 81 81 (100%) 0
Robots were correctly evaluated 81 81 (100%) 0
Best evaluated robot was assigned 81 81 (100%) 0
Task Execution (8 runs of 81 scenarios)
Simulation Environment Setup 648 633 (97.69%) 15 (2.31%)
navto_room 633 630 (99.53%) 3 (0.47%)
retrieve_sample 630 615 (97.62%) 15 (2.38%)
navto_lab 615 564 (91.71%) 51 (8.29%)
unload_sample 564 558 (98.94%) 6 (1.06%)

Total 648 558 (86.11%) 90 (13.89%)

Table 1: Success rate of different phases the experiment

ures (90 in total). Table 1 summarizes the findings. To
verify the Coalition Formation phase, we implemented a
script to extract information from the logs generated by
the mission coordinator and check three properties: (i) the
ensemble was formed correctly, specifically, if all robots in1295

the scenario were inserted on the knowledge base of the
mission coordinator; (ii) robots were correctly evaluated,
i.e., for all robots with the required skills, the time and
required battery were estimated and the estimated values
are what it is expected; and finally, (iii) the best-evaluated1300

robot was assigned, i.e., the best-ranked robots received
the assignments. After identifying and fixing an issue,
all 81 scenarios passed the 3 checks, which gave us confi-
dence that the implementation of the Coalition Formation
Process was executed correctly. We then further analyzed1305

the Execution phase by analyzing the logs generated dur-
ing the execution, especially the trial runs that resulted
in mission failure. We analyzed the logs generated and
classified them. In the 648 trial runs of the approach, we
observe 90 failures. We categorized the failures into two1310

groups: (i) simulation failure and (ii) task execution fail-
ure. The simulation failures occurred when the simulation
was not loaded correctly, and the generated logs files were
empty. Simulation failure occurred in 15 of the 648 trial
runs. We evaluated that these failures were related to the1315

simulation environment and not to the mission coordina-
tion or task execution. Task execution failures occurred
when an assigned robot that had the skill to execute the
task, started to execute a task according to its plan but was
not able to conclude the task with success. The trials that1320

occurred task execution failures ended up in a low-battery
or timeout-sim state, depending on whether the battery of
the assigned robot was depleted or not reached a timeout
before the simulation. By observing the last tasks started
on a failed trial we determined in which task the failure1325

occurred. Table 1 presents the task execution failures ag-
gregated at the top-level decomposition of the plan for the
lab samples example (iHTN on Figure 1). The majority of
task execution failures occurred during the navto_lab task
(51 of the 90 failures). Specifically, these failures occurred1330

in the 8 trial runs of scenario 19, the only scenario for

which the approach did not obtain any success. By ana-
lyzing the time taken by the assigned robot, we concluded
that in these scenarios the estimates were too optimistic
for the task navto_lab. One possible explanation is diffi- 1335

culties while maneuvering out of the nurse room (IC 6, in
the case of scenario 19) where the robot needs to realize
a very close turn while exiting the room to get to the cor-
ridor that leads to the lab (the same maneuver is present
in 73.3% of trials that ended on failure while representing 1340

only 33.3% of the total of trials).
After carefully checking the coalition formation pro-

cess and analyzing each of the failures that occurred in
the trials in which MissionControl was applied, we con-
cluded that observed failures were due to (i) simulation 1345

environment failures, which are out of our control and
responsibility, (ii) limitations on the skill implementation,
and (iii) limitations of the skill descriptors. The limita-
tions on the skill implementation and descriptor are out
of the scope of this paper. By out of scope we mean that 1350

the errors are caused by the simulation environment and
its interaction with the extensions we build for the exper-
iment as well as the environment implemented to control
each robot. In any case, those failures were not caused
by MissionControl, which renders it as a rather robust 1355

approach.

6.1.4. Threats to Validity
Reliability. To build confidence that our architecture pro-
motes autonomous mission coordination and execution,
we offer the instance of MissionControl used in our evalu- 1360

ation as a publicly available artifact [16].The implementa-
tion comes with a suite of passing tests asserting that our
proposed architectural decisions are followed in the im-
plementation, through varying scenarios [16].In the pub-
lic repository, we provide automated tooling for executing 1365

the experiments, collect data, assistance for parsing and
analyzing the collected data.

Internal validity. We account for the MissionControl’s effi-
ciency in terms of successful mission executions against a
baseline algorithm. To this extent, successful missions are 1370
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measured by whether all tasks assigned to the individual
robots are correctly performed. Although the teams of
robots may vary in capabilities, they share a repository
of navigation and grappling skills in which the notion of
task success is accounted for and monitored by the same1375

logging scheme. Thus, the mission fails due to malfunc-
tioning skills reflect equally in the MissionControl and
baseline executions. The trials were sufficiently executed
to reduce systematic errors. By these means, we avoid
biases and measurement misconceptions as well as build1380

on statistically sound results.

External validity. The trials’ configurations include only
one mission specification in one simulated environment.
Although the MissionControl is designed to be indepen-
dent of the semantics of the input model, given the sepa-1385

ration of concerns, the generalization of our approach is
impaired by lacking experimentation of different missions
in other environments, which would raise other types of
uncertainties. Also, with only 10 implemented skills in-
cluding one collaboration human-robot, and one robot-1390

robot a more comprehensive evaluation with other types
of collaboration is left to future work.

6.2. Evaluation Goal 2
We recall that key quality attributes of MissionControl

as a software architecture is to promote modifiability (i.e.1395

ability of the architecture to be modified to suit a new ap-
plication) and integrability (i.e. ability of the architecture
to integrate with existing and independently developed
systems). Therefore, the goal of this evaluation is formu-
lated as follows:1400

Goal 2: Evaluate the modifiability and integrability of Mis-
sionControl.

• Question 1) How modifiable is the architecture?

• Question 2) How integrable is the architecture?

To perform the evaluation of both modifiability and1405

integrability we first perform a “tactic-based” evaluation
inspired by [17] and, then, a “guideline-based” evaluation
inspired by [4].

The process of the “tactic-based" evaluation consists
in reviewing the available artifacts (i.e. architecture doc-1410

umentation and the code base of the implementation in
our case) through a questionnaire that focuses on a sin-
gle quality attribute at a time. The questionnaire contains
items that query about the application of architecture tac-
tics to support the quality attribute. For each item, (i) we1415

register whether our design decisions (DD.1 to DD.7 in
Section 4) satisfy a specific tactic, (ii) we register the loca-
tion in the architecture where the tactic can be found (i.e.,
in which module), and, finally, (iii) we describe the ratio-
nale and assumptions. While inspecting the code base as1420

preparation for evaluation, in many cases we identified
improvements to be realized. In cases the modifications

were feasible and within the scope of this paper, we im-
plemented the improvements and then a new iteration
of evaluation was realized. These improvements were 1425

mostly clarifications on the documentation and refactor-
ing on the code base regarding re-organization of the code
units but not including functionality (e.g., renaming and
moving implemented units). Furthermore, while evaluat-
ing the architecture from the modifiability and integrabil- 1430

ity point of view, some tactics overlapped. In particular,
reduce coupling for modifiability is closely connected to
the limit dependencies for integrability. To avoid duplica-
tion, while evaluating modifiability, we focused on impact
changes in the MissionControl runtime environment, and 1435

while evaluating integrability, we focused on the Mis-
sionControl component model, i.e., the interfaces and the
support for integration of skill descriptor, environment
descriptor, and skill implementation components.

For what concerns the “guideline-based” evaluation, 1440

we performed an evaluation that is more specific to the
robotic domain. Specifically, we evaluated the various
modules executing the mission in relation to compliance
with the guidelines described in [4]. The set of 49 guide-
lines contains foundations for juxtaposing design deci- 1445

sions in robotic software within traditional software qual-
ity attributes (e.g, reliability, maintainability, safety) from
the ISO/IEC 25010 standard (ISO/IEC, 2010)7. Our pro-
posed architecture is concerned with leveraging modifi-
ability (sub-characteristic of maintainability in ISO/IEC 1450

25010) and integrability (similar enough to portability in
ISO/IEC 25010) as key quality attributes for multi-robot
management software. Therefore, for what concern the
guidelines-based evaluation, we analyse the compliance
of our architectural decisions to the empirical guidelines 1455

through the lenses of maintainability and portability.
The analysis process follows an in-house inspection of

the architectural decisions against the set of good prac-
tices. Three co-authors designed and executed the inspec-
tion8. We attribute the roles of architect analyst to two 1460

co-authors that participated intensively in coding, and
external inspector to a co-author external to the imple-
mentation but aware of the high-level architectural deci-
sions. The inspector was supposed to go through each
and every guideline checking its compliance against the 1465

guidelines. Checking compliance here stands for query-
ing the architect analysts whether the guideline is relevant
and whether and how the guideline is reflected in the im-
plementation, asking for examples when possible.

In the remainder of this section, we report the outcome 1470

of the “tactic-based” and “guideline-based” evaluations
by answering Questions 1 and 2.

7ISO/IEC 25010:2011 Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models.

8All the process and decisions are further documented in our repli-
cation package [16]

20



6.2.1. Question 1) How modifiable is the architecture?
Tactic-based evaluation: The questionnaire for the mod-

ifiability quality attribute has 7 items for evaluation bun-1475

dled in three tactic groups: (i) increase cohesion, (ii) re-
duce coupling, and (iii) defer binding. After some inter-
actions of refactoring, all questions were satisfied. A brief
discussion by each tactic group follows.

The first tactic group, i.e. increase cohesion, has the1480

intent to reduce the probability that a change request
requires changes in multiple modules. The part of the
questionnaire devoted to evaluate this first tactic group
is constituted of two questions, which focus on cohesion
of software modules. We evaluated these two questions1485

for each module of MissionControl module (c.f. Figure 7).
The most related design decisions are DD.1-DD.3, DD.5,
and DD.6; they help to split responsibilities between com-
ponents.

The second tactic group, reduce coupling, has four1490

items that are focused on increasing the encapsulation
and abstraction. The most related design decisions to this
tactic group are DD.2, DD.5 and DD.6. The use of De-
pendency Injection for wiring the components (Section 5)
was also important for avoiding components to depend1495

on specific implementation of others.
Finally, the defer binding tactic group section of the

questionnaire has only one item that assesses whether the
binding is systematically deferred in the system, so that
a functionality can be replaced latter in life cycle. The1500

most related design decisions are DD.2, DD.5, and DD.6.
Binding is threefold deferred in MissionControl:

• through the use of service interface for mission de-
composition, so missions can be adapted without
changing MissionControl,1505

• through the use of ensembles that allows for dy-
namic binding between the coordinator and the robots
at runtime, and

• through the use of a component model, which per-
mits to (i) add skills and environment descriptors,1510

and (ii) bind the components during initialization
thanks to the skill implementations; this allows these
components to be changed at runtime without mod-
ifying MissionControl.

In summary, after some refactoring, the code base sat-1515

isfies all items in the questionnaire. Details about the
analysis are available in our online appendix [16].

Guideline-based evaluation: When it comes to analysing
to what extent MissionControl fosters modifiability through1520

the lenses of software architecting practices in robotics, we
highlight three9 guidelines:

9Three (3) out of 16 guidelines concern modifiability. Among those
16, guidelines M1-M3 were considered the most useful for robotics prac-
titioners working with ROS-based applications.

M1. “When possible, core algorithms, libraries, and other
generic software components should be ROS-agnostic;”

M2. “Group nodes and interfaces into cohesive sets, each of 1525

them with its own responsibilities and well-defined de-
pendencies”

M3. “Decouple ROS nodes from variations in the execution
environment”

As for M1D. ROS-agnostic core algorithms, the de- 1530

sign decision 6 (aka DD.6) on defining MissionControl as
a skill-based system induced our architects in implement-
ing a single interface between mission management and
ROS-based skill management (e.g., such as SkiROS [22]).
The single interface grants ROS-agnostic mission coor- 1535

dinators with benefits to further modifications. It also
complies with DD.7 on independent implementation of
mission coordination.

Moreover, regarding M2, DD.6 breaks robotic mission
management into coordination (i.e., coalition formation) 1540

and execution. Thus, it favors MissionControl’s users to
clustering the coalition formation process and its depen-
dencies (i.e., mission, skill, and environment information)
separately from sequencing of actions, skill activation, and
respective dependencies (i.e., sensors and actuators) as 1545

shown in Figs. 3 and 4. The separation of concerns lever-
aged by DD.6 results in the possibility for independent
extensions to the coalition formation and skill implemen-
tations.

Regarding M3, i.e, decoupling ROS nodes from varia- 1550

tions in the environment, it emerges as effect of grounding
MissionControl in DD.5, on coordination extension points.
The environment descriptors feed the coordination layer
with application-specific knowledge, resulting in more
precise and domain-dependent coalition formation. Such 1555

feature alleviates MissionControl’s users from encoding
and modifying environmental information in the ROS
nodes that are responsible for skill behavior.

Besides the three guidelines reported above, we have
evaluated how MissionControl’s design decisions stand 1560

against 16 guidelines for architecting modifiable robotic
software. MissionControl supports or favors a set of 9
guidelines for users implementing heterogeneous multi-
robot applications. One guideline is relevant to modifi-
ability, but not to multi-robot applications. Despite their 1565

relevance to MRS, four guidelines are not relevant to mis-
sion coordination, for example “Keep number of nodes as
low as possible [...].” and “Use ROS standard messaging pro-
tocols [...].”. Finally, two guidelines concern data persis-
tence. They deemed relevant to the multi-robot domain 1570

and to mission coordination but they were not followed
in MissionControl. For long-term and short-term data
persistence, MissionControl employs in-memory mission-
, skill-, and environment descriptors in opposition to cen-
tralized ROS node for data management, as suggested in 1575

the guidelines.
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The complete list of modifiability guidelines and anal-
ysis is available in our online appendix [16].

6.2.2. Question 2) How integrable is the architecture?
Tactic-based evaluation: The questionnaire for the inte-1580

grability quality attribute has a total of ten items, orga-
nized into three tactic groups: (i) limit dependencies, (ii)
adapt, and (iii) coordinate. An overview of the evaluation
for each tactic group follows.

The limit dependencies tactic group has five questions1585

and evaluates the use of tactics such as encapsulation and
the use of an intermediary to limit the number of potential
dependencies between components of the architecture.
An architecture that limits the number of dependencies
can reduce the impact needed to integrate a new compo-1590

nent, thus favoring integrability. In MissionControl, we
provide clear extension points with well-defined inter-
faces and fewer dependencies between the architecture
and the extending components. Design decisions that ad-
dress the limit decision group are DD.2, DD.3, DD.5, and1595

DD.6. All queried items in the limit dependencies tactic
group are satisfactorily supported in MissionControl.

The adapt tactic group evaluates the ability of the sys-
tem to change the interface of components in order to
make it integrable in the architecture. This is realized by1600

applying tactics related to configurability of components,
service discovery (both supported by MissionControl),
and interface tailoring (which we only partially support).
The tailoring interface item refers to adding and hiding
interfaces statically (i.e., at compile time). Although in1605

MissionControl there is no mechanism for tailoring in-
terfaces at compile-time, we believe that this could be
achieved in our architecture by using the adapter design
pattern, with minimal impact on our architecture due to
the use of dependency injection. However, we are not cer-1610

tain that it would suffice in every scenario; so, we judge
this item as partially supported. For this group, 2 out of 3
questions were answered as fully supported, while one is
partially supported. The most relevant design decisions
that address this tactic group are DD.2, DD.3, DD.5, and1615

DD.6.
Finally, the coordinate tactic group is assessed via two

questions. The first question is related to the use of orches-
tration to manage components. MissionControl applies
such tactic in the estimating module to call the descriptors,1620

and in the sequencing process to call the skill implemen-
tation in the required mission order. The orchestration
mechanism permits independence between components
that are related to different skills; this is realized through
an external orchestrating mechanism that calls the dif-1625

ferent skills. The second question in this tactic group is
concerned with resource management that governs access
to computing resources. This item is partially satisfied as
MissionControl realizes the coalition formation taking re-
sources into account. However, no resource management1630

is enforced during the execution of tasks by a skill imple-
mentation. In a future version of MissionControl, it could

supervise the skill implementations according to available
resources at runtime. For example, if the robot is running
short on battery, the robot could slow down. The design 1635

decisions that address this tactic group are DD.4, DD.5,
and DD.6.

In summary, in the tactic-based evaluation for the in-
tegrability, MissionControl satisfies 8, out of 10 items and
partially satisfies 2 of them. This reflects the use of dif- 1640

ferent tactics in MissionControl to enable and promote
the integration of new components in the architecture.
Among those items only partially satisfied, resource man-
agement is planned for future work. Details about the
analysis are available in our online appendix [16]. 1645

Guideline-based evaluation: The validation team anal-
ysed 16 guidelines promoting integrability for software
architecture design in robotics, with remarks to two sup-
ported guidelines: 1650

I1. “Identify variation points of the system in advance, and
design the system so that it can be extended by third-party
users without modifying its core nodes’

I2. “ROS nodes should be agnostic of the underlying com-
munication mechanisms (e.g., network protocols, deploy- 1655

ment topology.”

MissionControl provides interfaces for external mis-
sion planners (DD.3), reuse in different environments (DD.5),
and skill-based mission management (DD.6). Such deci-
sions impact on integrating planners, environment speci- 1660

fications, and skill implementations. Referring to I1, iden-
tifying variation points in advance was a fundamental
building block of our architecture. This is highlighted by
the subsystems marked by purple in Fig. 3, i.e., Skill De-
scriptors, Environment Description Services, and Library of 1665

Skill Implementations.
MissionControl favors ROS nodes decoupled from un-

derlying communication mechanisms (I2.). This is a result
from the design decision 2 (DD.2), on ensemble-based
architectural pattern. To this extent, DEECo [35] plays 1670

an important role. The skill implementations are inde-
pendent from the topology or address of other robots,
enabling runtime binding between peers. Therefore, in-
tegrating new skill implementations at ROS level is freed
from the underlying communication mechanisms between 1675

robot peers.
In summary, 16 guidelines were analysed against Mis-

sionControl’s design decisions for architecting integrable
robotic software. MissionControl supports or favors 7
guidelines. Other 9 guidelines are not relevant to Mis- 1680

sionControl’s scope since they are concerned with what
and how skills should be designed on top of ROS nodes.
This is not a primary concern of MissionControl, given
DD.1. (i.e., separation of responsibility between coordinator
and robots). From the seven (7) favored guidelines, six 1685

guidelines were deemed useful by practitioners [4] and all
of them are present in MissionControl. The last guideline
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is concerned with long- and short-term data persistence.
The complete list of integrability guidelines and analysis
is available in our online appendix [16].1690

6.2.3. Threats to Validity
Construct Validity. In-house evaluation of architectural

decisions pose threats to validity. Given the unique nature
of our proposal, we decided to design a rigorous process,
which was revised and approved by all co-authors, in-1695

cluding experts in software architecture research. More-
over, we make available in a replication package a detailed
documentation of questions, working documents, conver-
sations, processes, and results for peer-review.

7. Final Remarks and Future Works1700

In this paper, we presented MissionControl, an ar-
chitecture for coordination of missions of heterogeneous
robots. The missions are received as hierarchical task
networks and MissionControl automatically assigned the
available robots to received missions. To decide on as-1705

signments, the MissionControl coordinator takes into ac-
count the required skills for the mission and actual skills
of the robots, as battery charge constraints, while trying
to optimize the required time to conclude the missions.
MissionControl provides a component model that allows1710

for easy integration of new skills into the system. Mis-
sionControl makes no assumptions on the mission speci-
fication, besides that tasks on a mission specification, have
a counterpart of the library of skills, which makes a sys-
tem implemented with MissionControl able to execute a1715

variety of missions that uses skills within the library. The
system manages dynamics taking advantage of the en-
sembles paradigm that allows the entry and exit of robots
from the ensemble and formation of the coalition between
the available robots based on knowledge at the moment1720

of the mission’s start. Additionally, we integrate a reac-
tive layer, based on behavior trees, which allows the robot
to react to emergent events. The conducted experiments
have shown that a system implemented with Mission-
Control was able to achieve higher rates of success when1725

compared to a baseline approach.
In our future work, we intend to investigate better

models to estimate plans in dynamic environments, and
a process to reassign missions with faulty robots.
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