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Abstract—Goals are first-class entities in a self-adaptive system
(SAS) as they guide the self-adaptation. A SAS often operates
in dynamic and partially unknown environments, which cause
uncertainty that the SAS has to address to achieve its goals.
Moreover, besides the environment, other classes of uncertainty
have been identified. However, these various classes and their
sources are not systematically addressed by current approaches
throughout the life cycle of the SAS. In general, uncertainty
typically makes the assurance provision of SAS goals exclusively
at design time not viable. This calls for an assurance process that
spans the whole life cycle of the SAS. In this work, we propose
a goal-oriented assurance process that supports taming different
sources (within different classes) of uncertainty from defining the
goals at design time to performing self-adaptation at runtime.
Based on a goal model augmented with uncertainty annotations,
we automatically generate parametric symbolic formulae with
parameterized uncertainties at design time using symbolic model
checking. These formulae and the goal model guide the synthesis
of adaptation policies by engineers. At runtime, the generated
formulae are evaluated to resolve the uncertainty and to steer
the self-adaptation using the policies. In this paper, we focus
on reliability and cost properties, for which we evaluate our
approach on the Body Sensor Network (BSN) implemented in
OpenDaVINCI. The results of the validation are promising and
show that our approach is able to systematically tame multiple
classes of uncertainty, and that it is effective and efficient in
providing assurances for the goals of self-adaptive systems.

Index Terms—Self-adaptive systems, uncertainty, goal model-
ing, symbolic model checking, adaptation policy

I. INTRODUCTION

Uncertainty in a software system is defined as the cir-
cumstances in which the system’s behavior deviates from
expectations due to dynamicity and unpredictability of a
variety of factors existing in such systems [1]. For this reason,
uncertainty is a fundamental challenge for a self-adaptive
system (SAS) and pervades from the system’s requirements to
its infrastructure and runtime environment [2]. Many sources
of uncertainty have been identified and further grouped to
four classes: (i) the system itself, (ii) the system goals,
(iii) the environment, and (iv) human aspects [1], [3]. These
various classes of uncertainty have to be addressed by SAS
assurance processes to comprehensively and systematically
tame (address) such uncertainties. Otherwise, the provided
assurances may render themselves inaccurate or incomplete.
Therefore, uncertainty should be leveraged as a first-class
concept in self-adaptation [2] and in the assurance process [3].
We generally consider an assurance process as all design-time

and runtime activities providing evidence that the adaptation
goals are satisfied.

However, a SAS faces a paradoxical challenge in the pres-
ence of uncertainties [3]: “how can one provide guarantees
for the goals of a system that is exposed to continuous
uncertainties?”. There has been extensive research to address
uncertainty in SAS [1], [4], but with no focus on proposing
solutions to systematically tackle classes of uncertainty and its
sources [1]. Also, the main focus has been on environmental
uncertainty (regarding the variability of execution contexts),
and on system goals uncertainty (regarding goal changes) [1].
Moreover, most of the existing approaches postpone the treat-
ment of uncertainty to the runtime phase of the system’s life
cycle [1] while rather neglecting the explicit management of
uncertainty right from the start with the requirements. For
instance, we proposed in previous work a goal-based feedback
loop for real-time SAS that enhances the assurance process of
goals verified offline with online learning [5]. The focus has
been on real-time properties and learning, without explicitly
managing (any class of) uncertainty as a first-class concept.

To recognize and manage uncertainties in the assurance
process from early on, we propose an end-to-end goal-oriented
approach based on Goal-Oriented Requirements Engineering
(GORE) [6]. GORE offers proved means to decompose tech-
nical and non-technical requirements into well-defined entities
(goals) and reason about the alternatives to meet them. Hence,
it has been used as a means to model and reason about the sys-
tems’ ability to adapt to changes in dynamic environments [6]–
[9]. Based on GORE, our approach leverages goal modeling
to support the modeling of different sources of uncertainty
within the following classes: (1) system itself, (2) system
goals, and (3) environment. We should note that by system
we mean the managed system that comprises application
code to realize domain functionality [3]. The approach further
supports the automatic generation of trustworthy verifiable
models parameterized with uncertainties, which are used at
runtime to assist the assurance of a SAS.

Our assurance process to tame uncertainty aims at both
design- and runtime of SAS. At design time, we augment
goal modeling with uncertainties in which the leaf tasks
represent executable components in the system and have their
respective reliability, cost, and frequency (w.r.t. usage profiles)
properties. Then, we automatically translate the resulting goal



models into reliability and cost parametric formulae using
symbolic model checking [10]. These formulae are used as
runtime models to express probabilities over the fulfillment of
SAS goals. Specifically, they take different classes of uncer-
tainty into account while supporting self-adaptation. To over-
come the state-space explosion problem of traditional model
checking [11], we compositionally generate such parametric
symbolic formulae from Markov Decision Processes (MDPs)
with parameterized uncertainties based on our augmented goal
model. At runtime, based on the idea of feedback control [12],
[13], the controller (henceforth called managing system [3])
continuously monitors the costs and reliability statuses of the
managed system as well as context conditions to resolve the
parameterized uncertainties. Then, the parametric (runtime)
models are exercised to (i) evaluate the system’s reliability and
cost, and (ii) evaluate policy actions that should be triggered
to achieve the goals, thus guiding adaptation decisions in SAS.

We evaluate our work by the ability of our assurance
process to efficiently support the managing system in taming
uncertainties. For this purpose, we extended our previous
Body Sensor Network (BSN) artifact [5] with new features
to incorporate uncertainties that could hinder reliability and
cost properties of patients assisted by the BSN. The adaptation
policies synthesized by our approach for the BSN then tame
such uncertainties by means of parametric symbolic formulae
for reliability and cost. Through our approach, the managing
system is indeed able to adjust the managed system to work
in the set point boundaries while taming different classes
of uncertainties with significant reliability and cost trade-off
enhancements (at least twice as much) over self-adaptation
without taming uncertainties. Moreover, our results show that
runtime parametric model checking for the BSN is affordable
(i.e., formula verification time is 0.02s, formula size is 22kB).

In a nutshell, to tame multiple classes of uncertainties,
we propose an augmented assurance process of SAS that
blends over the high-level representation of goals and low-
level representation of synthesis and verification models of
SAS through symbolic model checking with parameterized
uncertainties. The contributions of this work are threefold:

1) We introduce annotations to semantically enhance goal
models with different classes of uncertainty, thus provid-
ing first class support for uncertainty in goal modeling.

2) We develop an algorithm to automatically generate the
parametric symbolic formulae from our enhanced goal
model. These formulae containing parameterized uncer-
tainties guide (i) the synthesis of adaptation policies by
engineers, and (ii) the self-adaptation at runtime.

3) We provide two artifacts by (i) extending the goal-
oriented dependability analysis framework (GODA) [14]
with the generation of parametric symbolic formulae
with parameterized uncertainties, and (ii) evaluating our
approach on an extended version of the BSN [5] to
validate the assurance process we propose in this work.

The rest of the paper is structured as follows. In Section II,
we provide background knowledge on the extended Body
Sensor Network (BSN) used as our running example. We
discuss the proposed approach in Section III and evaluate our
proposal in Section IV. Section V highlights related work and
Section VI concludes the paper along with future work.

II. THE BODY SENSOR NETWORK EXAMPLE

To illustrate our approach, we use the example of a Body
Sensor Network (BSN) [15] enriched with new features to
incorporate uncertainties that affect reliability and cost (e.g.,
power consumption) of the BSN. The main objective of the
BSN is to keep track of a patient’s health status, continuously
classifying it into low, normal, or high risk, and to send an
emergency signal to a central unit in the case of an anomaly.
The structure of the BSN is as follows: several wireless sensors
are connected to a person to monitor her vital signs, namely, an
electrocardiograph sensor (ECG) for heart rate beats measure-
ment, a pulse oximeter for blood oxygen saturation (SaO2), a
thermometer for body temperature (TEMP) in Celsius, and
a sphygmomanometer for measuring diastolic and systolic
arterial blood pressure (ABP). Additionally, the central node
can preprocess the collected data, filter redundancy, translate
communication protocols, and fuse data. Table I shows how
the sensor values and thus, how the context relates to the
patient’s health risk as specified by a domain expert. The
implementation of BSN is based on OpenDaVINCI [16].

In general, a Contextual Goal Model (CGM) is composed
of actors, goals, tasks, and contexts [7]. Actors are humans
or software with the ability to decide autonomously on how
to achieve their goals. Goals are abstractions to represent
stakeholders’ needs and expectations, which offer an intu-
itive way to elicit and analyze requirements, while tasks are
responsible for the operationalization of a these goals, that
is, an operational means to reach them. A goal is satisfied
by the compositional fulfillment of its tasks. Finally, contexts
are partial states of the world that are relevant to a goal as
context changes may influence the (quality of the) goals and
the means of achieving them. Goals and tasks of a CGM can
be refined into AND-decomposition (OR-decomposition), that
is, a link that decomposes a goal/task into subgoals/subtasks,
meaning that all (at least one) of the subgoals/subtasks must be
fulfilled/executed to satisfy its parent entity. The link between
a goal and a task is called means-end, and indicates a means
to fulfill a goal through the execution of a task.

Fig. 1 shows an excerpt of the CGM for the BSN. The root
goal of the actor “Body Sensor Network” is “G1: Emergency
is detected”, which is refined into “G2: Patient status is
monitored”. G2 is divided into two subgoals: “G3: Vital signs
are monitored” and “G4: Vital signs are analyzed”. Such goals
are realized by tasks that are refined to leaf tasks that are
operational. For instance, G3 is realized by “T1: Monitor
vital signs” that is refined to “T1.1: Collect SaO2 data”,
“T1.2: Collect ECG data”, “T1.3: Collect temperature data”,
“T1.4: Collect ABP data”, and “T1.X”. The tasks T1.2 and

TABLE I: Context Operationalization for a Patient’s Status.

Sensor Info Data Ranges
Oxygen saturation: 100 > low > 65 > medium > 55 > high > 0

Heart beats:
300 > high > 115 > medium > 97 > low >

85 > medium > 70 > high > 0

Temperature:
50 > high > 41 > medium > 38 > low >

36 > medium > 32 > high > 0
Systolic Pressure: 300 > high > 140 > medium > 120 > low > 0
Dyastolic Pressure: 300 > high > 90 > medium > 80 > low > 0



Fig. 1: Contextual Goal Model of the Body Sensor Network.

T1.3 are not detailed in Fig. 1 but their further refinements to
leaf tasks are analogous to task T1.1 and T1.4. The placeholder
task T1.X exist because of uncertainty and will be discussed
in the following section. The operation of the BSN is subject
to six different context conditions. Contexts C1 to C5 refer to
the availability of sensors that collect data related to a patient’s
vital signs, which may be true or false. Context C6 refers to
the operationalization of collected data, stipulating ranges of
valid integer or double values that each sensed data can assume
when analyzing a patient’s health status for risks [15].

Contexts C1 to C5 cause a non-deterministic behavior such
that the fulfillment of G3 depends on the execution of any
combination of tasks T1.1, T1.2, T1.3, T1.4, and T1.X. The
behavior assumed at runtime is related to the different con-
junction of contexts that currently hold, and each conjunction
shapes the system to fulfill a goal at a different quality level.

III. A GOAL-ORIENTED APPROACH TO TAME
UNCERTAINTIES IN SAS

Our approach aims at trustworthy SAS. It relies on the
model representation of a SAS under uncertainty that allows a
reasoned and precise analysis of reliability and cost properties
and that supports the synthesis of adaptation policies. Fig. 2
provides an overview of our approach with its four activities:

(1) Contextual Goal Modeling with Uncertainty: At design
time, our approach extends the GODA framework [14] to sup-
port goal modeling that takes different classes of uncertainty
into account. This results in augmented contextual goal models
(CGMs) that make the uncertainty explicit.

(2) CGM to Parametric Symbolic Formulae: Using the
augmented CGM, our approach automatically generates formal
models for future analysis, particularly the formulae with
parameterized uncertainties targeting reliability and cost prop-
erties. These formulae keep the uncertainty explicit.

(3) Synthesize Policies: The extended CGM and the formu-
lae are then used to guide engineers in synthesizing adaptation
policies. For this purpose, the model and formulae inform the
engineers about the goals, contexts, and uncertainty that have
to be taken into account.

(4) Policy Enactment: Finally, a subset of eligible policies
are enacted at runtime, which will guide the adaptation of the
managed system to assure the satisfaction of goals supported
by the reliability and cost parametric formulae.

Although the contributions of the approach mainly refer to
the design-time phase, we have integrated and evaluated the
policies and formulae in a feedback loop for self-adaptation.
We provide an interface between the formulae and the feed-
back loop so that the analysis of the managed system as well as
the evaluation and selection of policies for self-adaptation are
based on these formulae instead of complex runtime models
as proposed and used in [17]–[19].

In the remainder of this section, we detail the approach and
discuss each of its activities shown in Fig. 2.

Fig. 2: Assurance Process to Tame Uncertainty.

A. Contextual Goal Modeling with Uncertainty

The first step of our approach consists of designing a
goal model of a SAS that takes uncertainty into account1.
For this purpose, we augment CGM and introduce annota-
tions to support three classes of uncertainty: (1) the sys-
tem itself, (2) system goals, and (3) the environment, as
well as non-deterministic behavior. According to Mahdavi-
Hezavehi et al. [1], uncertainty related to the system itself
refers to the managed system (i.e., the subsystem under
adaptation); uncertainty related to system goals refers to the
specification, modeling, and alteration of goals; and uncer-
tainty related to the environment refers to environmental
circumstances that interact with or affect the system.

In our work, each executable task (i.e., leaf task) of the
CGM is implemented by a component in the managed system
that has an identification label, description, execution proba-
bility (or equivalently, service usage profile), execution cost,
and reliability. In particular, the execution probability indicates
the execution profile over time, the cost indicates the energy
consumption, and the reliability represents the probability of a
successful execution of the component. Thus, the mapping of
leaf tasks to components connects the CGM to the managed
system. On the other hand, the context variable in the CGM is

1The implementation is available at GitHub https://github.com/
gabrielasolano/Seams2019. The modeling and analyzing environment of our
GODA extension is available at Heroku https://seams2019.herokuapp.com/.



an outcome of the context operationalization process [20], [21]
that has an identification label, description, and Boolean value
that indicates whether a context is currently active or not, thus
connecting the CGM to the managed system’s environment.

In the following, we discuss the CGM extensions for un-
certainty of the system itself, system goals, and environment,
as well as for modeling non-deterministic behavior.
System itself. Regarding uncertainty related to the system
itself, we focus on two sources: future parameter value, and
incompleteness [1]. To represent a future parameter value in
the CGM, that is, uncertainty of system values such as reli-
ability and cost of components executing tasks, we associate
corresponding parameters to each executable task. Thus, the
reliability and cost of a component are annotated to the leaf
task the component implements. In Fig. 1, these parameters
are the annotation [R,W] to each leaf task, where R refers to
reliability and W to cost. We should note that such parameters
are intrinsic to each leaf task in our augmented CGM so
that they are not required to be explicitly attributed to any
particular value and neither explicitly modeled. In contrast,
the values will be obtained by monitoring the execution of
the managed system’s components. The incompleteness of the
system is represented by a placeholder node “X” for a goal or
task that is not entirely known at design-time. A replacement
for such a placeholder is only known at runtime. For instance,
task “T1.X” in Fig. 1 will be replaced at runtime by some
data collection task that is unknown at design-time. Despite
we model the incompleteness of the system as an uncertainty
in the CGM, we leave its taming for future work.
System goals. The support for uncertainty related to system
goals focuses on the specification of goals [1], specifically on
enhancing the accuracy of the specification of stakeholders’
preferences [3]. To this end, we associate leaf tasks with their
frequencies of execution. This frequency represents the usage
profile of the corresponding task so that it describes an external
view of the use of each component of the managed system.
Similar to the reliability and cost properties, the frequency
is associated to leaf tasks as shown in Fig. 1. The annotation
[F] to each leaf task represents the task’s execution frequency.
Similar to the annotation [R,W] for the reliability and cost
parameters of a task, the parameter F is intrinsic to each
task. Therefore, it is not explicitly attributed to any particular
value in the model and neither explicitly modeled. In contrast,
its value will be obtained by monitoring the frequency of
executing the managed system’s components.
Environment. Regarding uncertainty related to the environ-
ment, our approach supports execution context and noise in
sensing [1]. The execution context is inserted in the CGM
as context annotations. Such annotations are associated with
a node n and they can assume integer, double, or Boolean
value types. In Fig. 1, C1 to C6 represent the contexts in
which the BSN operates and that needs to be monitored to
determine a suitable behavior of the BSN during execution.
To support noise in sensing, we acknowledge the use of
sensors by SAS (e.g., cyber-physical SAS) in its monitoring
infrastructure to measure events in its environment [22]. We
define a modeling guideline to take into account the data
collection behavior of sensors. In this sense, a sensor’s task of
collecting data is decomposed into three essential sub-tasks.

The first task, read data, is responsible for gathering data from
the environment. The second task, filter data, is responsible
for filtering and removing noise in the gathered data. Finally,
the third task, transfer data, sends the filtered data to the
managing system. For instance, the tasks “T1.1: Collect SaO2
data” and “T1.4: Collect ABP data” exemplify the use of our
guideline for the blood oxygen saturation and arterial blood
pressure sensors, respectively (see Fig. 1). With this guideline,
we support the use of sensors in SAS while mitigating the
noise in sensing associated with them through dedicated tasks.
Non-deterministic behavior. Another extension of the CGM
is the possibility of defining a system’s non-deterministic
behavior using the decision-making (DM) annotation. Non-
determinism in SAS is brought by uncertainty, such that
the lack of runtime knowledge implicates planning multiple
alternative behaviors at design time to accommodate possible
configurations the system may face during execution. The
DM-annotation is only inserted in non-leaf nodes (goals or
tasks), and it requires the node to be refined into context-
dependent subtrees by an OR-decomposition. For instance
in Fig. 1, task “T1: Monitor vital signs” has the annotation
DM(T1.1, T1.2, T1.3, T1.4, T1.X), which specifies that the suc-
cessful execution of any combination of the context-dependent
subtrees T1.1, T1.2, T1.3, T1.4, or T1.X will result in the
successful fulfillment of T1. In other words, T1 has up to
25 different ways to be satisfied, but the decision of which
way to pursue is only made at runtime, after mapping each
context of T1’s subtrees to a value and eliciting the viable
paths. For example, assuming that BSN is only operating with
SaO2 and ECG sensors at a given time. This means that only
contexts C1 and C2 are evaluated to true, therefore only tasks
T1.1 and T1.2 may fulfill their parent node T1 (see Fig. 1). In
this sense, the viable paths to fulfill T1 are: (i) through only
T1.1; (ii) through only T1.2; or (iii) through both T1.1 and T1.2.
By providing this annotation, our work avoids the enumeration
of all possible paths brought by context variability, therefore
avoiding a state space explosion problem in the goal model.

B. CGM to Parametric Symbolic Formulae

After the goal modeling, our approach automatically trans-
lates the augmented CGM to verifiable models, which avoids
any overhead and errors caused by a manual generation step.

The generation of parametric formulae is a key enabler
towards an affordable time-space runtime analysis [14]. Be-
cause of uncertainty and the corresponding non-deterministic
behavior, model checking requires a Markov Decision Process
(MDP) [23] to provide best- or worst-case scenarios analysis
based on lower or upper probability bounds that can be guaran-
teed, when ranging over all possible paths [24]. Consequently,
symbolic model checking of a whole CGM with uncertainty
through a single MDP may present memory and time limita-
tions due to the quantity of parameters involved. Our approach
overcomes these limitations by accounting for uncertainty and
by allowing the model checking of independent and smaller
parts of the system, thus compositionally generating unique
formulae and avoiding combinatorial state explosion problems.

We build the parametric MDP (in PRISM language [25])
for each leaf task (i.e., executable task) in the augmented
CGM, and compose them to represent the fulfillment of the



modeled goals. Listing 1 presents the PRISM template for a
context-dependent leaf task N1. In particular, c1 is a binary
placeholder that assumes value 1 (true) when the execution
context in the leaf task N1 holds, and value 0 (false) otherwise;
r1 represents the reliability, and f1 the execution frequency
of the task. The latest two represent the success probability
of a task and the usage percentage of a task in a given time,
respectively. Therefore, they assume real values in the range
of 0 to 1. Moreover, s1 models the state of the leaf task.
State init (s1 = 0) corresponds to the initial state. Then, a leaf
task can enter state running (s1 = 1) if it is selected to start
execution, or the final state skipped (s1 = 3) if it does not
participate in the fulfillment of the parent goal. Before, it is
verified whether the context condition of a task, if existent, is
satisfied or not. The probability of moving from init (s1 = 0)
to running state (s1 = 1) is c1 ∗ f1 if the leaf task is context
dependent, and f1 otherwise. Consequently, 1 − (c1 ∗ f1)
represents the probability of moving from init (s1 = 0) to
skipped state (s1 = 3) for a context-dependent leaf task, and
1− f1 for a context-free leaf task. Once started running, the
result of the task fulfillment is success (s = 2) with probability
r, if the task has successfully been executed, otherwise failure
(s = 4) with probability 1−r. The cost of executing the task is
represented by w1 in the reward structure. Label next is used
to tag a transition that needs to be synchronized with other
transitions in the same or in different modules, while variable
x represents an index that sequentially sets the actions of the
model. The MDP for a goal Gi is obtained by composing the
MDP models of its subtrees.

1 const int c1; //context condition of n1
2 const double r1; //n1 probability of success
3 const double f1; //n1 frequency of execution
4 module N1
5 s1 :[0..4] init 0;
6 //init to running or to skipped
7 [next<x>] s1 = 0 -> c1*f1 : (s1’=1)+(1-c1*f1) : (s1’=3);
8 [] s1 = 1 -> r1 : (s1’=2) + (1 - r1) : (s1’=4); //running

to final state
9 [next<x+1>] s1 = 2 -> (s1’=2); //final state success

10 [next<x+1>] s1 = 3 -> (s1’=3); //final state skipped
11 [next<x+1>] s1 = 4 -> (s1’=4); //final state failure
12 endmodule
13 rewards "cost"
14 s1 = 1 : w1; //cost of n1 execution
15 endrewards

Listing 1: CGM Context-dependent Leaf Task in PRISM
Language.

1 const int CTX_1; //context condition of n1
2 const int CTX_2; //context condition of n2
3 const int CTX_3; //context condition of n1 & n2
4
5 global c1: [0..1] init 0; //variable that enables n1
6 global c2: [0..1] init 0; //variable that enables n2
7 module NonDeterminism
8 s :[0..5] init 0;
9 [next<x>] s = 0 -> (s’=1);

10 [] s = 1 -> CTX_1 : (s’=2) + (1 - CTX_1) : (s’=1);
11 [] s = 1 -> CTX_2 : (s’=3) + (1 - CTX_2) : (s’=1);
12 [] s = 1 -> CTX_3 : (s’=4) + (1 - CTX_3) : (s’=1);
13 [] s = 1 -> (s’=5); //no uncertainty holding
14 //enable the correspondent tasks
15 [] s = 2 -> (s’=5) & (c1’=1);
16 [] s = 3 -> (s’=5) & (c2’=1);
17 [] s = 4 -> (s’=5) & (c1’=1) & (c2’=1);
18 [next<x+1>] s = 5 -> (s’=5);
19 endmodule

Listing 2: CGM Node with a DM-annotation in PRISM
Language.

To compose the MDP model for a CGM node with a DM-
annotation, we also model the non-determinism in PRISM
as shown in Listing 2. The CTX parameters represent each
combination of context conditions modeled in the node’s
subtrees. They assume integer values of 1 or 0 to indicate
whether the represented context conditions are satisfied or
not. Lines 10–13 present the non-determinism in the model
that depends on the values of the CTX parameters to be
resolved. Once the non-determinism is resolved, the global
variables c1 and c2 are either set to 1, enabling the execution
of its corresponding leaf task, or to 0, indicating that the
corresponding leaf task will enter skipped state.

In this work, we focus on reliability and cost properties.
Their specifications are based on the idea of the probabilistic
existence property [26], that is, the probability that a system
will eventually reach a state that satisfies a goal of interest.
The maximum and minimum reliability and cost of fulfilling a
goal Gi is defined in Table II, where proposition φ represents
the success of Gi and φ is recursively formed by composing
the propositions of the nodes underlying Gi in the CGM.

TABLE II: Reliability and Cost Properties for Verification.

Property PCTL formula
Reliability (max) PmaxGi

=? [F (φ)]

Reliability (min) PminGi
=? [F (φ)]

Cost (max) CmaxGi
=? [F (φ)]

Cost (min) CminGi
=? [F (φ)]

Proposition φ varies for each node in the CGM according to
the node’s features: AND/OR-decomposition, DM-annotation,
and incompleteness. Table III specifies the proposition for each
feature, where i 6= j are nodes in the CGM, and Ci is the
context information constraining node i. Note that a node spec-
ifying incompleteness in the system is optional to the system
overall fulfillment, since it depends on the availability of an
unknown runtime resource. Note also that the proposition for
a node with DM-annotation takes into account the execution
context of its subtree, since it is a mandatory information
when using the DM-annotation. Other node i, with a different
feature, that is also constrained by a context condition has its
proposition defined as φ′ = (!Ci ∧ skippedi ∨ φ), where φ is
also described according to Table III.

TABLE III: Proposition of Success of a Node in the CGM.

Node features Proposition
AND-decomposition φ = succeededi ∧ succeededj
OR-decomposition φ = succeededi ∨ succeededj
DM-annotation φ = succeededi ∨ (!Ci ∧ skippedi)
Incompleteness φ = succeededi ∨ skippedi

With the MDP and property formulae for each node feature,
we use the symbolic model checking PARAM [27] to generate
their correspondent symbolic formulae. For features whose
nodes have context constraints, we restrict PARAM not to
resolve context variability, leaving context conditions parame-
terized in the formulae. In our approach, uncertainties related
to context conditions are only resolved at runtime. Therefore,
we obtain unique formulae for reliability and cost properties



TABLE IV: Symbolic Formulae.

Node features Reliability formula Cost formula
AND (N1, N2) Cn1Pn1 ∗ Cn2Pn2 (Cn1Wn1 + Cn2Wn2) ∗ PAND(n1,n2)

OR (N1, N2) −Cn1Pn1 ∗ Cn2Pn2 + Cn1Pn1 + Cn2Pn2 (Cn1Wn1 + Cn2Wn2) ∗ POR(n1,n2) − Cn2Wn2 ∗ Cn1Pn1

DM(N1, N2) −Cn1Pn1 ∗ Cn2Pn2 + Cn1Pn1 + Cn2Pn2 (Cn1Wn1 + Cn2Wn2) ∗ PDM(n1,n2) − Cn2Wn2 ∗ Cn1Pn1

Incompleteness (Nx) Cx ∗ Px ∗OPTx Cx ∗Wx ∗ Px ∗OPTx

in terms of the context parameters, instead of maximum and
minimum property formulae. For the features that do not
require a context condition, PARAM results are the same
for both maximum and minimum property analysis. Table IV
summarizes the formulae for the different features of a CGM
node. Note that, in the first column, N1, N2, and Nx represent
subtrees. In the second and third columns, Pn encapsulates the
reliability and usage profile (i.e., frequency of execution), Wn

represents the cost, and Cn represents the context condition
of subtree n. Cn may assume values 1 (true) or 0 (false) to
indicate whether the context holds or not at a given time. Note
also that the symbolic formulae for Nx (that represents the
incompleteness in the system) yields a variable OPT that is
either 1 (true) or 0 (false) to render the existence of the node’s
resource (e.g., a sensor or component) at runtime.

Even though the formulae of all structures are in terms of
context condition (Cn), this information is only mandatory
when using the DM-annotation. In this sense, the formulae of
a node with purely AND/OR-decomposition or an incomplete
node (Nx), but no uncertainty involved, follows Table IV,
only without the parameter Cn. Also, in spite of the formulae
for OR-decomposition and DM-annotation being similar, the
semantics behind each structure is very different, since DM
represents non-determinism in the system. We should note
that, for the purpose of space and clarity, Table IV shows
the formulae for a binary DM operator but the formulae for
more operands is obtained in a compositional way. For a single
operand, one just needs to set Cn2 to zero.

From Table IV, one can note that the reliability and cost
parameters of all CGM node’s features grow following a
geometric progression with respect to the number of subtrees.
For AND/OR-decomposition and incomplete node Nx, the
reliability and cost parameters grow with a common ratio
2 and 3, respectively, in the best-case scenario (i.e., when
there are no context conditions involved). In the worst-case
scenario (i.e., when all subtrees are context dependent), the
common ratio is 3 for reliability and 4 for cost parameters.
The parameters of DM-annotation grow following a geometric
progression with common ratio 3 for reliability and 4 for cost.

To generate reliability and cost parametric formulae for the
overall system, we exploit the symbolic formulae on Table IV
and the tree structure of goal models in a compositional way
while taking the uncertainty modeled in the CGM into account:
probability formulae of smaller goal models are computed
and then composed to obtain the formula of its corresponding
larger goal model. We follow a recursive depth-first strategy to
visit the tree structure of the CGM. Each node gets a respective
symbolic formulae in terms of the formulae associated with its
sub-nodes. Leaf nodes get atomic formulae that are returned
to rewrite their parents’ formulae. Therefore, by the time the
rewriting terminates, the system overall formulae will be a

composition of its subtrees formulae.
Algorithm 1 presents the compositional approach to build

a parametric formulae. It starts from node, which is a local
or the root goal of the CGM, and for which the parametric
formula should be built. Line 1 stores the subtree nodes of
node in the list decNodes. Line 2 fetches the decomposition
type decType, either AND or OR, of node. Line 3 uses
dmAnnot to store the fetched DM-annotation of node. Line 4
stores the context information of node in ctxAnnot. Line 5
calls function getForm, which returns in nodeForm the
parametric symbolic formula of node considering the de-
composition type (decType) and DM-annotation (dmAnnot)
according to the symbolic formulae listed in Table IV.

Algorithm 1: composeNodeForm(Node node)
Input: A node, either a root or a local goal
Result: Parametric Symbolic formula of the node

1 List [] decNodes ← getDecomposition(node);
2 DecType decType ← getDecType(node);
3 String dmAnnot ← getDecisionMakingRule(node);
4 String ctxAnnot ← getContextInfo(node);
5 String nodeForm ← getForm(decType, dmAnnot, node);
6 foreach subNode in decNodes do
7 String subNodeId ← getId(subNode);
8 String subNodeForm ← composeNodeForm(subNode);
9 replaceSubForm(nodeForm,subNodeForm,subNodeId);

10 end
11 if isLeafTask(node) then
12 nodeForm ← getParamForm();
13 end
14 return nodeForm;

Accordingly and following a depth-first strategy, each
subNode of the goal tree is traversed through a recursive call
to composeNodeForm, which produces a subNodeForm
that replaces its corresponding ID symbol in nodeForm
(lines 6 to 9). Whenever the recursive approach finds a leaf
task, the algorithm builds a parametric MDP of the task
according to Listing 1, and uses symbolic model checking
to retrieve the task reliability and cost formulae. Finally, line
14 returns the parametric symbolic formula for the goal node.

Fig. 3 exemplifies how the algorithm works for a fraction
of the BSN’s goal model to generate and compose a reliability
formula. Since G3 has no specific feature, its reliability will
be the same as its subtree “T1: monitor vital signs”. T1 has a
DM-annotation, therefore its reliability follows the symbolic
fomulae defined in Table IV for DM-annotations. Subtrees T1.1
and T1.2 have both an AND-decomposition, thus the reliabil-
ities of each subtrees are multiplied to obtain the reliabilities
of each, T1.1 and T1.2 (note that T1.1 and T1.2 have no further
context conditions so that the corresponding variables Cn are
set to 1). Finally, the leaf nodes have their reliability retrieved
by PARAM, in which rTi and fTi represent the reliability and



Fig. 3: Example of Composing a Reliability Formula.

execution frequency of leaf node i. Similarly, cost formulae
are generated by the algorithm.

The variability of the CGM contexts at runtime will create
a specific induced Discrete Time Markov Chain (DTMC)
to resolve any non-determinism at runtime. Accordingly, the
system overall formulae vary as well. Table V shows the
different context conditions the system may face during ex-
ecution, and the reliability formula for each of them. We
should note that the formula is specified in terms of reliability,
frequency of execution, and context condition, which are all
uncertainties parameterized in the CGM. In the case of a cost
formula, it would also be defined in terms of cost of nodes.
The computation of the reliability and cost formulae is used
to evaluate the trustworthiness of the system based on the
dynamic variance of (i) reliability, (ii) execution frequency,
(iii) cost, and (iv) context conditions as reflected in the CGM.
Also, by mapping the formulae parameters, one is able to
guide the synthesis of adaptation policies by retrieving valid
combinations of nodes to be executed at a given time. Next,
we detail the runtime phase of our approach.

TABLE V: Context Variability and Associated Formula

C1 C2 Reliability formula for G3
1 1 −rT1.11fT1.11rT1.12fT1.12rT1.13fT1.13 ∗ C1

∗rT1.21fT1.21rT1.22fT1.22rT1.23fT1.23 ∗ C2

+rT1.11fT1.11rT1.12fT1.12rT1.13fT1.13 ∗ C1

+rT1.21fT1.21rT1.22fT1.22rT1.23fT1.23 ∗ C2

1 0 rT1.11fT1.11 ∗ rT1.12fT1.12 ∗ rT1.13fT1.13 ∗ C1

0 1 rT1.21fT1.21 ∗ rT1.22fT1.22 ∗ rT1.23fT1.23 ∗ C2

C. Policy synthesis and enactment
1) Adaptation policy synthesis: In our approach, the adap-

tation policy synthesis relies on assembling a set of adaptation
goals and a set of possible actions. It is guided by parametric
formulae generated through the aforementioned translation
method, thereby assuring goal-oriented trustworthy behavior
at uncertain execution scenarios. Systematically, the synthesis
is composed by three steps: policy goals definition, contexts
and actions identification, and policies enactment.

a) Policy goals definition: Based on the augmented
CGM, the requirements engineer should define a set of prop-
erties (e.g., cost, reliability, performance) that the managed
system must satisfy during runtime and that attends to the
purpose of the policy. In our BSN example, we propose an

energy-saving policy that must deal with the reliability-battery
consumption trade-off. Therefore, we list two properties:
(1) the probability of successfully achieving G1 must be within
90% with a 2% error margin; (2) the battery consumption
(cost) for achieving G1 must be within 0.47W with a 2% error
margin. Thus, the policy goal definition consists on combining
the elicited properties into logic propositional sentences that
semantically attends to the purpose of the policy. In our
example, ’(1) AND (2)’ shall be continuously satisfied. The
policy goals are used as set points for guiding the desired
behavior of the managed system.

b) Actions and contexts identification: Once the proper-
ties and policy goals to be achieved are defined, the domain
expert must identify a set of contexts that shall be monitored
by the managing system, and a set of possible actions that
can be performed to modify the managed system’s behavior.
This step is highly dependent on the overall architecture,
the managed system’s knobs and sensors, and the context’s
sensors. For example, BSN operates with a publish/subscribe
architecture and its managing system monitors and act upon
the managed system through message exchange.

The context in which the system operates may be prone
to high variability, so it requires flexible adaptation goals
sensitive to contextual information. Therefore, we should note
that the domain expert shall employ context operationalization
techniques to enhance contextual knowledge when creating
the policies. In our BSN example (see Fig. 1), the contexts
C1 to C6 regard the availability and data correctness of SaO2,
ECG, temperature, and blood pressure sensors. At runtime, the
components responsible for the leaf tasks (collect, filter, and
send) can constantly inform the managing system whether the
contexts are active or not (e.g., whether a sensor is available).

Actions on the other hand are susceptible to the system
adaptation capabilities. Each action has a side effect which is
accounted in the properties evaluation before the definition
of eligible policies for achieving the adaptation goals. For
example, each node in the BSN has an execution frequency
that is directly proportional to the task’s reliability and cost,
in which the managing system can act upon to achieve the
adaptation goals at runtime.

2) Policies enactment: Once the policies have been synthe-
sized, they are taken to runtime as a set of possible actions
that will be exercised via the parametric formulae through
an exhaustive search for the current runtime situation. These
actions guide the behavior of the managed system to achieve
the adaptation goals in face of uncertainty.

Specifically, as illustrated in Fig. 4, the managing system
enforces at runtime the satisfaction of properties by continu-
ously monitoring the tasks’ internal properties (cost, reliability,
and frequency) and the active contexts (in terms of availability
of sensors), which all undergo an analysis process using the
parametric formulae. Then, the difference between the actual
cost/reliability status and the set point defined by the policy
is computed, and may trigger distinct actions for execution.
Since the uncertainty parameters are expressed in the formulae
originating from the augmented CGM, they are resolved
whenever a set of actions is executed to cope with transgressed
reference values. For instance for the BSN (Fig. 1), we exercise
the root goal G1 with the tamed and untamed availability of



Fig. 4: Control Feedback Loop for the BSN Example.

sensors using the energy-saving policy described throughout
this section, and obtain the curves plotted in Fig. 5c.

IV. EVALUATION

We evaluate our approach on the BSN prototype2 by means
of a Goal-Question-Metric (GQM) methodology [28]. The
evaluation compares two versions of the BSN, one with a
controller with untamed uncertainty (without our approach),
and the other one with a controller with tamed uncertainty
(with our approach). We do not compare with a version of
the BSN that has no controller since it is not a self-adaptive
system. Therefore, we aim at analyzing if the application
of our approach in the BSN is able to assist the adaptation
strategies with meeting its reliability and cost goals under the
presence of uncertainties. Table VI shows the goal, question,
and metrics for the evaluation.

TABLE VI: Goals, Questions, and Metrics of the Evaluation.
Evaluation Goal: Uncertainty impact on SAS assurance process

Question Metrics
How does our approach enhance
reliability and cost when taming
uncertainty coming from: system
itself (1a), system goals (1b), and
environment (1c)?

er and ec

In Table VI, er and ec are the enhancements of reliability
and cost, respectively. By enhancements we quantitatively
measure the gain in achieving the adaptation goals (i.e., relia-
bility and cost) that our approach promotes to the adaptation
in the presence of uncertainties compared to not using our
approach. These metrics are evaluated with reliability and
cost data collected over time, in BSN, at scenarios with
different classes of uncertainty using our generated parametric
formulae. We consider the impact of the adaptation policies
devised from the parametric formulae where the classes of
uncertainty are either untamed or tamed, and derive the
relation between the average distance d to the set point for
the untamed (duntamed) and tamed (dtamed) curves, where

d =

∑
|xi − x|
n

and ex =
duntamed

dtamed
, where x = r (for

reliability) or x = c (for cost).

2The BSN implementation and data used in this section are available at
GitHub: https://github.com/rdinizcal/bsn Seams2019.

A. Experimental Evaluation in the BSN

Our experimental evaluation consists of exploring distinct
classes of uncertainty scenarios, their impact on BSN, and
how our approach enhances reliability and cost during runtime.
Thus, the evaluation aims at confirming how our approach
leads engineers to build controllers that tame distinct classes
of uncertainty from an end-to-end goal-oriented perspective.
Therefore, we perform two executions for each scenario that
raise distinctions in the BSN performance: (1) controlled
behavior with untamed uncertainty and (2) controlled behavior
with tamed uncertainty. We compare how well the devised
adaptation policies, guided by the generated formulae and the
goal model either with tamed or untamed uncertainty, assures
that the managed system performs with respect to its goals.

1) Experimental Setup3: The experiments were ran in the
BSN, implemented with the OpenDaVINCI [16] framework.
To evaluate the formulae at runtime we use the Lepton
expression parser library [29].

For all scenarios, we employ an energy-saving policy, such
as Sec. III-C1, that aims at balancing reliability and cost
by exploring the relation between the components’ execution
frequencies :“the root goal G1 must be achieved with (90 ±
2)% reliability and (0.47 ± 0.01)W cost; the policy actions
are: adjust sensor’s sampling rate and adjust central hub’s
execution frequency.

2) Experimental scenarios and results:
Class of uncertainty: System itself. In this scenario, we
explore the direct impact of messages waiting to be read
by the central hub on the system’s goal for reliability and
cost, regarding the evaluation goal (1a). Here, we simulate
the degrading of the tasks’ reliability related to the delays on
processing messages due to unexpected number of patients
using the system. The patients are simulated by modules that
flood the central hub communication channel.

The untamed behavior depicted in Fig. 5a, is due to the
managing system’s unawareness of the reliability degrading
effect in the central hub, hence, we simulate the system
engineer estimating and setting static reliability values in the
managing system. This results in the reliability drift observed
during the execution, as long as new modules simulating
patients are instantiated and the system cannot repair due
to the difference between estimated central hub’s reliability
and the actual value. The tamed behavior also shows a
drift regarding the instantiations of new modules simulating
patients, however, it maintains the system within the set
point boundaries, confirming that the G1 is satisfied (see
Fig. 5a). The enhancement values for this evaluation scenario
are er = 2.66 and ec = 3.36. Thus, our approach enhanced
the reliability by 2.66 and the cost by 3.36 relative to the set
points compared to the untamed setting for this scenario.

Class of uncertainty: System goals. To investigate the
evaluation of this class of uncertainty (1b), we consider a
scenario in which the understanding of the system goals is
inaccurate, such as how the reliability and cost properties are
related to the patient’s profile, which could demand distinct

3Configuration for experiments: CPU 4x Intel(R) Core(TM) i7-5500U CPU
@2.40GHz, 8075MB RAM, Ubuntu 16.04.3 LTS, GNU C Compiler version
5.4.020160609, hard drive ATA Corsair Force LE.



(a) Uncertain Number of Users. (b) Uncertain Sampling Rate of Sensors. (c) Uncertain Availability of Sensors.

Fig. 5: Reliability and Cost Behavior for Different Classes of Uncertainty.

system goals according to the patient’s needs. For this pur-
pose, we simulate a scenario in which the doctor configures
the BSN sensors’ sampling rates with values based on the
patient’s profile. For example, consider a cardiac patient who
needs careful attention to heart rate. To optimize the battery
consumption, one could increase the sampling rate of the ECG
and decrease the rate of the thermometer. However, a mistaken
set up, due for example to uncertain needs and profile of a
patient, could lead to unnecessary battery consumption and
misguided adaptations with respect to the reliability and cost
properties.

The untamed behavior depicted in Fig. 5b is due to uncer-
tainty related to the sampling rate associated with the patient
profile. Thus, we simulate a situation where a system engineer
sets the managing system with a static sampling rate for each
sensor that does not correspond to the needs and profile of
the patient, for whom the BSN is operating. The managing
system then prompts the adaptation to the incorrect set point
resulting in the shifted behavior. On the other hand, the tamed
behavior adapts to the required set point boundary in the first
moments of the execution, assuring that the goal G1 is satisfied
(see Fig. 5b). The corresponding enhancement values for this
evaluation scenario are er = 3.04 and ec = 9.30.

Class of uncertainty: Environment. In this scenario, we
explore how the variation of available sensors impacts the
system’s goal of reliability and cost, thus investigated eval-
uation goal (1c). We simulate a local autonomous recharging
mechanism for each sensor that deactivates the sensor when
the battery level is less than 2%, and reactivates it when the
level achieves at least 90%. This results in an unpredictable
variation of the number of available sensors at runtime.

The untamed behavior depicted in Fig. 5c is due to the
managing system’s uncertainty about the number of available

sensors. Thus, we simulate a situation where the managed
system is unable to communicate the availability of its sensors.
In face of this uncertainty, the managing system’s engineer
estimates that all sensors are available. The disparity between
the estimated and the actual number of available sensors
explains the shifted cost and reliability curves in the un-
tamed execution. In contrast to the untamed behavior, the
tamed behavior evidences that the adaptations performed by
the managing system assures that the goal G1 is satisfied
within the adaptation goals requirements (see Figure 5c). The
corresponding enhancement values for this evaluation scenario
are er = 1.98 and ec = 4.09.

We should note the situation around 180s, when three sen-
sors become unavailable at the same instant and the managing
system could not find a strategy to satisfy the adaptation
goals. A few seconds later, one sensor was recharged and
became available so that the managing system could cope
with the situation and regain system stability. While the tamed
controller is able to reach steadiness, the untamed controller
still faces a drop in reliability and in cost close to the 300s.

3) Summary: The experimental results show that our ap-
proach provides an effective way to tackle three classes of
uncertainty: (1a) system itself, (1b) system goals, and (1c) en-
vironment, with enhancement gains (ex) ranging from 1.98 to
3.04 for reliability and 3.36 to 9.30 for cost. This means that,
in the worst case, our approach prompted an enhancement of
the BSN to achieve its adaptation goals in face of uncertainties
of almost twice as much; and in the best-case scenario of more
than nine times as much. Moreover, the runtime verification
seems to be quite affordable, considering a system like BSN
whose cost formula is generated in the mean time of 0.085s
with 60 parameters at design time, 22 KB of storage, and
evaluated within 0.020s at runtime.



B. Threats to validity

Construct validity. The major threats here are the correctness
of the implementation of the BSN and of the proposed
approach. The BSN has been thoroughly tested as part of pre-
vious work [5]. Concerning our approach, at least two authors
of this paper reviewed the implementation and checked the
plausibility of the evaluation results based on the experience
they have with the BSN.
Internal validity. Our approach showed itself effective and
efficient in the evaluation. Although we comprehensively deal
with uncertainties classes, unveiling all sources of uncer-
tainty involved in a system’s operation is inherently non-
deterministic, which represents a threat to any assurance pro-
cess. Moreover, our policy strategies were created manually,
which might represent a scalability threat in complex scenarios
with multiple uncertainties combined as well as in catastrophic
scenarios where highly rare events have to be taken into
account.
External validity. Although our approach is platform inde-
pendent, we do reckon the limitation of the evaluation since it
was applied in the specific case of the BSN. Further evaluation
must be performed to generalize the results. Despite all efforts
to implement the BSN with new features to tame uncertainty,
further study must be done to verify the applicability in real-
world scenarios with multiple uncertainties combined.

V. RELATED WORK

Regarding the modeling and verification approaches for
SAS under uncertainty, Filieri et al. [30] present a framework
to overcome model checking scalability issues by generating
runtime symbolic expressions of system requirements from
rewarded Discrete-Time Markov Chains, while accounting
for uncertainty in the managed system. Weyns and Iftikhar
[31] propose a modular approach for decision making that
supports changing goals at runtime. They combine distinct
models for each relevant quality of the system with runtime
simulation of the models to select an adaptation option that
satisfies the system goals. Bencomo and Belaggoum [32] map
goal models onto Dynamic Decision Networks (DDNs) to
provide a principled approach to make rational decisions in
the face of uncertainty within changing environments. Cailliau
and Lamsweerde [33] use goal models at runtime to support
adaptation aiming at increasing the actual satisfaction rate of
probabilistic system goals in spite of environment changes.
They use probabilistic LTL3 monitors to continuously eval-
uate goals satisfaction and find most appropriate countermea-
sures at runtime. In our work, we augment a goal-oriented
approach into modeling SAS within multiple sources from
different classes of uncertainty, from which we automatically
generate verifiable runtime models parameterized with these
uncertainties. Similar to Filieri et al. [30], we use symbolic
model checking to overcome model checking scalability issues
at runtime. But, our symbolic formulae are also able to guide
the synthesis of adaptation policies for self-adaptation.

Regarding the support of uncertainty in the assurance
process of an end-to-end methodology, Ghezzi et al. [34]
present ADAM, a model-driven framework conceived to sup-
port the development and runtime operation of SAS, aiming
at mitigating uncertainty concerning response time and faulty

behavior. Calinescu et al. [35] propose QoSMOS, a framework
to develop service-based systems that achieve their Quality of
Service (QoS) requirements through dynamically adapting to
changes in the system state, environment, and workload. In
[36], Calinescu et al. propose the ENTRUST methodology to
provide assurance evidence, cases, and arguments for SAS at
design- and runtime while supporting internal and environ-
mental changes. In our work, we go further on addressing
different classes of uncertainty, since we tame three classes
with focus on five sources of uncertainty: (i) future parameter
value, and (ii) incompleteness, regarding uncertainty in the
system itself; (iii) specification of goals, regarding uncertainty
in system goals; (iv) execution context, and (v) noise in
sensing, regarding environmental uncertainty.

Among the works that focus on synthesizing adaptation
policies, Su et al. [37] use a parametric MDP to apply the value
iteration method and select a confidently optimal adaptation
policy at runtime with focus on a trade-off among accuracy,
data usage, and computational overhead. Cámara et al. [38]
and Moreno et al. [39] use the PRISM language to model SAS
as MDPs and synthesize adaptation policies. They both use the
probabilistic model checker PRISM, but while Cámara et al.
[38] focus on a design-time approach to synthesize optimal
repertories considering uncertainty, Moreno et al. [39] use
PRISM at runtime to synthesize policies that maximize an
expected accumulated utility over a finite horizon. In our work,
we synthesize adaptation policies by means of our design-
time generated symbolic formulae parameterized with multiple
classes of uncertainty. In this sense, we avoid the model
exploration that is required by traditional model checking
techniques while supporting various types of uncertainty.

VI. CONCLUSION AND FUTURE WORK

In this work, we showed an assurance process for trustwor-
thy SAS that is able to comprehensively and systematically
tame various sources from different classes of uncertainty
based on Goal-Oriented Requirements Engineering (GORE)
and that covers the design- and runtime of the SAS. At
design time, we augment goal modeling with uncertainties.
From the resulting goal models, we compositionally generate
reliability and cost parametric formulae provided with pa-
rameterized uncertainties. These formulae are then used to
synthesize adaptation policies and, at runtime, to automatically
evaluate the fulfillment of SAS goals taking different classes of
uncertainty into account while supporting self-adaptation. The
evaluation on the BSN shows that our approach is effective
in taming different classes of uncertainty and efficient in
performing symbolic model checking of SAS parameterized
with multiple classes of uncertainty, assuming a reasonable
number of parameters.

As future work, we aim for an approach that supports more
scalable and automated synthesis of adaptation policies, while
quantitatively modeling uncertainty (e.g., with probability dis-
tributions). In addition, we plan to provide means to cope with
the combinatorial possibilities in the DM-annotation in the
goal model as well as how rare events such as catastrophic
scenarios could be taken into account. Finally, we plan to
evaluate our approach with multiple SAS exemplars.
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